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EDITORIAL NOTE 

Twenty years ago, Roshdi Rashed contributed a stimulating lecture at an 
international colloquium on philosophy, science and theology in the Middle 
Ages, held at the Boston University conference center nearby at Osgood Hill. 
Rashed's lecture initiated the colloquium and was entitled 'Recom­
mencements de l'algebre aux Xle et XIIe siec1es'; it appeared in The Cultural 
Context of Medieval Learning (Boston Studies, Vol. 26, 1975), edited by the 
organizers. John Murdoch and Edith Sylla. Cooperation and friendship 
developed between Rashed and our Center over the years, and personally as 
well. So it is now with pride and pleasure that I welcome this book. 

I also note that Rashed's admirable fusion of interests in the external and 
the internal aspects of the history of science, indeed the varieties of develop­
mental autonomy and developmental dependence, contributed again to 
international studies when he suggested that a colloquium be held on 
'Sciences and empires' as a main research program for the REHSEIS group 
at CNRS-Paris (Research on Epistemology and History of Exact Sciences 
and Scientific Institutions group of the National Center for Scientific 
Research). The result was an international conference at UNESCO in Paris, 
with the opening lecture by Roshdi Rashed, entitled 'Science c1assique et 
science mod erne it l'epoque de l'expansion de la science europeenne'; the 
proceedings appeared as Science and Empires: Historical Studies about 
Scientific Development and European Expansion, edited by Patrick Petitjean, 
Catherine Jami and Anne Marie Moulin (Boston Studies, Vol. 136, 1992). 

And just last year, Rashed contributed his paper on 'Analysis and Syn­
thesis According to Ibn al-Haytham' to the recent Festschrift for Marx 
Wartofsky, Artifacts, Representations and Social Practice, edited by Carol 
Gould and me (Boston Studies, Vol. 154, 1994). 

So, much is required for Rashed's range of studies, and how arduous is his 
effort in coming to terms with the dialectic of the internal and the external, 
the dialectic within the internal, and within the complexity of the historical 
sociology of the external! The present book is a fine exploration of one 
crucial period in the history of mathematics, a stage in the coming of algebra. 

April 1994 R. S. COHEN 
Center for Philosophy & History of Science 

Boston University 
VII 



PREFACE 

These studies belong to epistemological history but they are not intended 
to revive an old debate on methodology in the history of science. Here 
as elsewhere, our work as historian is in fact subject to an epistemological 
principle; it is not a methodological a priori, but rather, on the contrary, 
the only viewpoint which enables us to describe and understand the 
facts at the same time. How can we set forth these facts, I would even 
say discover and restore them, without analyzing the conceptual con­
figurations in which they are set, the connections they sustained with 
other configurations, the distortions to which they are subjected, and 
indeed the lack of understanding of which they are victims? There are 
so many considerations necessary for the restitution, at least partial, of 
this past and localized rational activity. To confine oneself to dating, to 
the search for influences, or just simply to recount the content of a 
text, is in fact of mediocre interest, even if made under the pretence of 
so-called analytical or bibliographical rigour. This epistemological con­
ception is all the more necessary when a field of research is relatively 
unexplored, as is Arabic mathematics. It compels us to grasp the latent 
structures buried beneath the diversity of mathematical facts and masked 
by the dispersal of texts, many still in manuscript form, in various 
libraries throughout the world. 

In Between Arithmetic and Algebra, the analysis of latent structures 
is conducted for algebra and algebraic calculus, numerical analysis and 
number theory, i.e. for the dialectic between algebra and arithmetic. In 
this analysis we evoke another dialectic between algebra and geometry 
and make some conjectures. The years following the French edition 
saw my investigations advance along two paths, presented mainly in three 
pUblications. The first is the mathematical work of one of the principal 
algebraists of the twelfth century discussed here, al-TusI; the establish­
ment of the Arabic text, its translation into French with an accompanying 
mathematical and historical comment (Rashed, ed., 1986) enabled us 
to reconsider his theory of numerical equations in detail and also to 
describe another fundamental movement in the history of algebra, I mean 
the dialectic between algebra and geometry, and the foundation of 

ix 



x PREFACE 

traditional algebraic geometry. In a second publication (cf. infra, IV.5), 
we examined the presence of the reciprocal of Euclid's theorem on perfect 
numbers in Arabic mathematics. What was conjectured here is there­
fore now established, and the English translation has given us the 
opportunity to take these facts into account. A third publication (Rashed, 
1991a) deals with methods of quadratic interpolation and attests to some 
results announced here earlier. These are the new facts of some signif­
icance which have enriched our knowledge of the areas studied here, 
all of which seem to confirm our earlier analysis. 

I would like to thank Angela F. W. Armstrong who undertook the 
English translation and to express my gratitude to Professor R. S. Cohen 
for accepting it in his collection and for his care in revising the trans­
lation. 

Bourg-la-Reine, 4 March 1993. ROSHDI RASHED 



INTRODUCTION 

Since the early nineteenth century, most histories of science have pre­
sented Arabic mathematics, like other scientific disciplines in that 
language, in a paradoxical light: though a fundamental chapter of the 
history of classical mathematics, they do not really belong. Historians 
of science cannot avoid coming across the works of Arab mathematicians 
in their research; they set foot on the stage of history either in person, 
or via Latin or Hebrew translations or, lastly, disguised in the works of 
scholars with direct access to the scientific language of Arabic, such 
as Leonardo of Pisa. But the rules for their appearance dictate the final 
scene, practically unchanged since the nineteenth century, by inviting 
them to slip away into the wings, to join all those other "extras" defined 
negatively by a term so loaded with ideology and myth that it speaks 
for itself: non- Western mathematics. Such a definition might be thought 
outdated, a vestige of nineteenth century traditional thought; on the 
contrary, it is still alive in the terminology of a large number of con­
temporary historians. So if the ideology that conjures up these pictures 
and myths of science is to be believed - analyzed in Appendix 1 - neither 
Arabic mathematics, nor Arabic science for that matter, have the right 
to claim a place in history. 

As regards this ideology, it was undoubtedly sustained by an inherent 
weakness of historical research which is moreover far from innocent: a 
somewhat contradictory picture of Arabic mathematics is superimposed 
on its paradoxical aspect. That ideology, with few exceptions, such as the 
works of the eminent historian Woepcke in the last century, was able 
to channel the interest that stimulates historical research by narrowing 
its scope as well. Greek works translated into Arabic were given top 
priority; while original works written in Arabic were overlooked, as 
the dearth of critical editions and the inadequacy of empirical studies 
during the last two centuries bear witness. The result could only be 
unreliable and fragmentary knowledge. For example, in histories of 
Arabic science, a tenth-century mathematical genius often rubs shoulders 
with a dull, untalented fourteenth-century commentator, the only reason 
for this relationship being the availability of documents. As a result, 
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2 INTRODUCTION 

Arabic mathematics quite often appears in numerous studies, not the 
worst, in a rather disconcerting light: a number of finds, theorems or 
propositions remarkable for their depth and potential, swamped in a mass 
of second-rate unrelated results. A contradictory picture that leaves the 
historian impassive nonetheless, he only pauses for results without really 
asking why they occurred. 

The survival of this paradox, fanned by a certain ideology, in this drab 
and contradictory picture, the result of some practises, is due, partly at 
least, to historical procedures and methods. As in many other areas of 
the history of science, in most cases particular attention is usually directed 
towards establishing the succession of scientists. In this respect, the 
historian of Arabic mathematics closely resembles those working in 
other fields, for whom historical order amounts to the chronological 
succession of authors. This is not the place to engage in a methodo­
logical debate; let us just remark that, based on incomplete historical 
data, this order must be partial and unreliable. The mass of writings 
accumulated over seven centuries and more, recorded in hundreds of 
thousands of manuscripts scattered over the four corners of the earth, 
dooms empirical historical reconstruction procedures in advance to pure 
contingency. For instance, though centuries apart, two mathematicians 
are sometimes made to follow one another through current ignorance 
about their intermediaries. A general history is therefore understand­
ably out of the question at the present time; but if we confine ourselves 
to one country or region, it then becomes illusory and out of all 
proportion to its real subject. 

Our reason for recalling these features of the history of Arabic 
mathematics is not only to brush aside some ideas set forth and discussed 
later in this book, but also to inform the reader about a recent trend: 
the history of Arabic science has recently inspired an unprecedented 
interest and an evergrowing number of publications. However, this 
enthusiasm is not only characteristic of genuinely scrupulous historians 
concerned with understanding classical science; it also denotes a trend 
where, for good or bad reasons, apologists mingle with sensationalists. 
Only methodological rigour and strictness can guarantee us, as much 
as possible, against such endeavours. 

Given these conditions, how can we set about isolating from among 
the host of facts, names and works, the hidden lines on which mathe­
matical rationality or rationalities have developed? Essential for revealing 
the structure of mathematical activity at least seven centuries old, this 
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theoretical question has a heuristic value as well, since it may indicate 
to the research worker where his priorities lie. By following this path I 
was able to reconstruct some hitherto unknown facts and, in particular, 
some theoretical trends embedded in empirical studies until now, and 
identify the main structure of Arabic mathematics. So let us go back 
to the basic rules for these procedures set forth in more detail in this 
volume. 

To understand classical mathematics, and mathematics written in 
Arabic in particular, is to place ourselves first and foremost between 
algebra and arithmetic, on the one hand, and algebra and geometry on 
the other. Only this approach enables us to grasp the fundamental and 
radically new role of algebra in the formation of mathematical reasoning. 
And furthermore, it enables us to discern a movement for the reorgani­
zation and restructuring of these disciplines by each other; in other words, 
to see emerge a double dialectic between arithmetic and algebra, and 
algebra and geometry, a dialectic which, it should be emphasized, was 
in no way a priori as it came to light as our research progressed. It 
gradually emerged as an inductive movement for extending each disci­
pline by overhauling its foundations, generalizing its concepts and 
methods, sometimes at the cost of rejecting and eliminating some of 
them. The essays collected here pay particular attention to establishing 
and describing the first movement between arithmetic and algebra. 
Analysis of the dialectic between algebra and geometry, simply men­
tioned in passing here, will form the subject of another book. 

But to define the direction of this movement and grasp its scope, we 
have first of all to reconstitute one event in order to elucidate its 
significance: the appearance of al-KhwarizmI's work on algebra. For 
the first time in history, algebra is seen in this work as an autonomous 
discipline and in full possession of its name. We shall show that this early 
ninth-century work, though technically weak compared with the great 
Hellenistic compositions, remains nonetheless irreducible to those of 
Antiquity or late Antiquity. We shall therefore seek to isolate the very 
idea of this new discipline contained in it, the herald of an entire current 
of later research. And it is precisely this posterity that will give al­
Khwarizmi's work its full historical dimension. 

Although nothing or virtually nothing is known about al-Khwarizmi's 
predecessors and, consequently, the genesis of the first movement of 
algebra, we know at least that it was set in a non-Hellenistic arith­
metical tradition, the very one from which two works on arithmetic by 
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al-Khwarizmi arose, of which only one has survived in its Latin com­
pilations. Be that as it may, from al-Khwarizmi's time, mathematicians 
took hold of this new discipline to develop algebraic calculation, theory 
of equations, indeterminate analysis, well before the translation of 
Diophantus' Arithmetica. We cite among others, the famous names of Ibn 
Turk, Abu Kamil and Ibn aI-Fad}. 

However, about one and a half centuries after al-Khwarizmi, algebra, 
developed and enriched, was the subject of renewal, in fact a real 
new beginning. And arithmetic made this possible. If the term "arith­
metization" has a non-figurative meaning, it is the most appropriate 
to describe the contributions of al-Karaji and his successors such 
as al-Shahrazuri and al-Samaw)al. By "arithmetization" I mean the trans­
position and extension of elementary operations of arithmetic, algorithms 
like Euclidean division or the extraction of roots of algebraic expressions, 
in particular polynomials. Mathematicians succeeded in constituting 
polynomial algebra and reached a clearer understanding of the alge­
braic structure of real numbers through the arithmetization of algebra 
during the tenth and twelfth centuries. To use another language, this 
was how they carried out empirically finite algebraic extensions in the 
field of rational numbers. 

From henceforth, the algebraic treatise will be constructed around these 
arithmetical operations and algorithms and includes, as an integral part, 
a chapter on indeterminate analysis. Attested in mathematical texts well 
before the translation of Diophantus' Arithmetica, indeterminate analysis 
came into its own with this Arabic translation, especially when it had 
received an algebraic interpretation at variance with its initial purpose, 
in our opinion. 

Some of the studies included here concern the renewal of algebra, 
achieved by the arithmetization movement. Others examine the effects 
of renewed algebra on arithmetic and number theory. For instance, after 
defining the place and status of al-Karaji whose merit, since Woepcke, 
is appreciated, though his real objectives continue to be misunderstood, 
and after showing he was the creator of a school and tradition, not an 
isolated case, i.e. after defining this renewed algebra, we were in a 
position to establish that not only well-known but new results were 
organized into chapters which have never been reconstructed, let alone 
named. That these chapters are destined to be enriched is undisputed, 
nor is it excluded that additions will be made. Our only claim is to 
have reconstructed the main chapters according to which the arithmetic 
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and algebraic acquisitions of Arabic mathematics were ordered and 
organized. But before setting them out, we want to show one result of 
renewed algebra related to proof techniques: finite mathematical induc­
tion as a demonstration method. It was during the tenth century that 
this method stood out from others used in arithmetical algebra. In our 
study entitled "Mathematical induction: al-KarajI, al-SamawJal", we were 
led to dialecticize the regressive method in the history of science in order 
exactly to grasp the originality of the method of finite mathematical 
induction both as a concept and a technique. 

If we now look at the chapters that comprise this field of mathematics, 
we find: 

1. Combinatorial Analysis 

Although considered until recently as an activity peculiar to Renaissance 
mathematicians and their successors, combinatorial analysis was in fact 
already part of Arabic mathematics (as we have shown) and its forma­
tion as calculus took place in two stages. First seen without unity, i.e. 
simply as calculus with the combinatorial features relegated to secondary 
importance, algebraists saw it as auxiliary "arithmetical method" for 
algebra; and on the other hand, lexicographers, and linguists in par­
ticular, saw it as a combinatorial practice, i.e. whose propositions were 
neither formulated in general terms or even less proved. In a second 
later stage, unity was essentially achieved by number mathematicians 
who concentrated on the study of the particular function, the number 
of divisors of a number. We establish the first stage in "Combinatorial 
analysis in Arabic mathematics" and reconstruct the second in "Amicable 
numbers, aliquot parts and figurate numbers in the thirteenth and four­
teenth centuries". 

2. Numerical Analysis 

The application of traditional arithmetic to the new algebra provides 
the subject matter of this chapter where methods of numerical research 
are generalized, for example, the extraction of roots, with various methods 
for achieving it. We shall show how the invention of new fractions 
arose and present its theory at the occasion of the generalization of 
methods for extracting the nth root in particular. Cf. "The extraction of 
the nth root and the invention of decimal fractions". 
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3. The Solution of Numerical Equations 

A result of the new algebra, this chapter, which took advantage of the 
preceding chapter as well as its development, is partly the result of 
the impossibility at that time of giving an algebraic solution of cubic 
equations. The mathematicians involved in the elaboration of this topic 
were, as we shall see, the same as those who belonged to another trend, 
i.e. geometer-algebraists. From below the surface and full of promise 
for the future, rich and profound ideas are seen to emerge, some of which 
were to prove functional and analytical. Cf. "The solution of numerical 
equations and algebra: al-Ti.isT, Viete". 

The application of algebra to number theory, inherited from Hellenistic 
mathematics, was to inaugurate classical number theory, which preserved 
its style until 1640 at least. The following chapters can be added to the 
above. 

4. New Diophantine Analysis 

Here we 'are not concerned with traditional Diophantine analysis which 
as we said, was already part of algebra, but with Diophantine analysis 
integer. Emerging in the tenth century and based on, but also in spite 
of algebra, it began with numerical triangles, before extending to more 
complicated equations and systems of Diophantine equations. One 
of the main results is the statement of Fermat's conjecture for the case 
where n = 3 whose proof was unsuccessful. Cf. "Diophantine analysis 
in the tenth century: the example of al-Khazin". 

5. Classical Theory of Numbers 

Lastly, in three successive studies, "Ibn al-Haytham and Wilson's 
theorem", "Amicable numbers, aliquot parts and figurate numbers in 
thirteenth and fourteenth centuries", and "Ibn al-Haytham and perfect 
numbers", we present new contributions to number theory, for example, 
a study of the characteristics of prime numbers, linear congruences, 
arithmetical functions. Particular stress will be laid on defining the style 
of that theory. 

If we follow the dialectic between algebra and arithmetic, the main 
structure of both disciplines emerges. But diachrony also gives us access 
to the lines along which they developed. The body of results obtained 
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shows that the void or quasi-void that most historians postulate between 
Alexandria and the Italian Republics, constituting an unsurmountable 
obstacle to their own understanding of the history of mathematics, is 
in fact quite full. Consequently, we had to consider afresh the problem 
of periodization in history. So it seemed appropriate to add a critical 
historical study of the notion of Western science itself and some 
reflections on the problem of periodization in the history of classical 
mathematics in an appendix. However, these results also show that 
science written in Arabic, called Arabic science for that reason only, 
whose only legitimate heirs were those who carried it on and devel­
oped it, is no more and no less than a moment, a stage in history, and 
should be considered as such if we want to avoid going astray or leading 
others astray as well. 



CHAPTER I: THE BEGINNINGS OF ALGEBRA 

1. AL-KHWARIZMI'S CONCEPT OF ALGEBRA 

Mul).ammad ibn MUsa al-KhwarizmI l wrote his renowned Kitiib al-jabr 
wa al-muqiibala (Musharrafa and Ahmad, eds., 1939) at Baghdad 
between A.D. 813 and 833, during the reign of al-MaJmUn. It was the 
first time in history that the term algebra appeared in a title to 
designate it as a discipline (al-Nadlm, Tajaddud, ed., 1971, pp. 338-341). 
Its recognition was not only insured by the title, but was confirmed by 
the formulation of a new technical vocabulary intended to specify its 
objects and procedures. 

The event was crucial and was recognized as such, as much by ancient 
as by modern historians; its importance, furthermore, was not lost on 
the mathematical community of the time. Even in al-KhwarizmI's 
lifetime, or at least shortly afterwards, mathematicians were quick to 
comment on his book. Of his immediate successors alone, Ibn Turk, 
Thabit ibn Qurra, al-~aydananI, Sinan ibn al-Fatl)., AbU Kamil, and AbU 
al-WatlP al-BUzjanI should be cited. Some of these commentaries clearly 
constituted a fundamental contribution to the formulation of algebra. 
In writing the history of their disciplines, these mathematicians, like their 
successors, agreed unanimously to assign precedence to al-KhwarizmI2. 
There was one dissenting voice: that of Ibn Barza, who gave that honour 
to his grandfather, a claim rejected out of hand by AbU Kamil Shujac•3 

Although generally accepted, these few facts are difficult to inter­
pret. In fact, as long as he remains unacquainted with the work of 
mathematicians preceding al-KhwarizmI, the historian is likely to find 
himself in a position which at first sight seems enigmatic. But this is a 
situation that, at least for the time being, remains irremediable.4 The 
question is still open how this newly conceived discipline was developed, 
and how it is that this particular contribution, several aspects of which 
suggest the culmination of past activity, emerges as a radical departure. 
Unable to find a satisfactory answer, historians have for some time 
engaged in an endless debate around two complementary themes: the 
origins of algebra and the sources used by al-KhwarizmI, referring in turn 

8 



THE BEGINNINGS OF ALGEBRA 9 

to the Hellenistic mathematician (Euclid or Diophantus, depending upon 
the case) and to Indian or, more recently, Babylonian mathematics. The 
very fact that so many contradictory opinions exist indicates that no 
single one can prevail and that no historian has been able to establish 
effectively any kind of link between al-KhwarizmI and any of the 
supposed authors. The difficulty is the same when it concerns not his 
work as a whole but a chapter more restricted in scope, such as the 
measurement of surfaces and volumes, al-MisalJa. One has only to 
remember the contradictory theories· of the relationship between al­
KhwarizmI's book and the Mishnat ha-Middot.5 

It is not uncommon under these conditions for historians to have 
recourse to theories which raise more problems that they resolve, such 
as the well-known hypothesis of the "geometric algebra" of the Greeks. 
In addition to the problem of establishing the genesis of al-KhwarizmI's 
contribution to the history of algebra is another problem of a different 
order. Even if one accepts the breakdown of al-KhwarizmI's book to 
identify the traces of ancient mathematics, it must be allowed that these 
are merely vestiges which do not in the least clarify the theoretical form 
of the new knowledge. This section will be confined to an examination 
of this form in an attempt to grasp the concept of algebra as formu­
lated by al-KhwarizmL Then it will perhaps be possible to make a more 
rigorous enquiry into the genesis of al-KhwarizmI's algebra. 

II 

In the introduction to his book al-KhwarizmI announces his plan: to 
provide a manual which could be used for arithmetical problems, com­
mercial transactions, in cases of inheritance, and land measurements 
(Musharrafa and Ahmad eds., 1939, p. 16). Sections of his book develop 
these themes. 

The first section, a theoretical one, is concerned with this method 
- lJisab of algebra and al-muqabala, its early terminology and concepts. 
In the second, al-KhwarizmI determines the bases of the normal 
procedures which allow practical calculations to be reduced to funda­
mental algebraic types. The last sections, of purely practical intent, are 
concerned with the application of this method to commercial transac­
tions, land surveys, geometric measurements, and, lastly, testaments. 
From reading al-KhwarizmI's book it is clear that algebra appears from 
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the outset as a theoretical discipline, extended to be applicable to both 
the fields of numbers and of metric geometry. 

Therefore, if algebra is an arithmetic - lJisab, as al-KhwarizmI writes 
- it is so for at least two reasons. On the one hand, the laws of calcu­
lation can be applied to different objects (arithmetic or geometric) once 
formulated in the primitive terms of algebra - number, unknown, and 
unknown squared (al-KhwarizmI had studied these laws from a book now 
preserved in its Latin translation).6 On the other hand, algebra is found 
to have been envisaged from the outset with all the possibilities of 
application, and as such answers the practical needs of mathematics. It 
may be apodictic knowledge, but algebra is also an applied science. Its 
object is not specific since it is concerned with numbers as well as with 
geometric size. 

It is impossible to overstress the originality of the conception and style 
of al-KhwarizmI's algebra, which did not rise from any "arithmetical" 
tradition, not even that of Diophantus. Analysis of al-KhwarizmI's 
book reveals two kinds of primitive terms: purely algebraic terms and 
those common to algebra and arithmetic. The algebraic terms, as already 
mentioned, are the unknown, designated without distinction - root, thing, 
and its square, miil. To these may be added rational positive numbers, 
the laws of arithmetic ±, xl -+, ..,t, and the equals sign. All of these 
operations are designated by words of unequal occurrence. For example, 
speaking of multiplication, al-KhwarizmI uses t;lrb - to multiply - but 
uses t;l1 just as often; and more rarely (two occurrences each) he 
uses thny and thlt. The relation fi functions equally as an operator of 
multiplication according to the model "n fi (in, by) n". 

As regards algebraic terms proper, it would be astonishing if al­
KhwarizmI knew only the two cited previously. In his book, it should 
be noted, he deals with a problem whose context suggests that he knew 
the third power, although he did not name this term. He writes in effect: 
"if one speaks of a square - miil - multiplied by its roots, it comes to 
three times the first square". By miil al-KhwarizmI almost invariably 
means the square of the unknown. He does express the same term the 
thing, at times. However, juxtaposed to the root, the term mal only 
expresses the first meaning, thus: x2·x = 3x2• This being established, 
even independently of the example, al-KhwarizmI must have known 
the cubic power, at least. It is known that the cube root was extracted 
at that time, as in the Opuscula in the Measurement of the Plane and 
Spherical Figures by Banii Miisa/ and that the solid number can be 
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found in al-ijajjaj's translation of Euclid's Elements. Banii Miisa and 
al-ijajjaj were contemporaries and, so to speak, the colleagues of 
al-KhwarizmI, at the "House of Wisdom". The extension of the notion 
of algebraic power was effected, furthermore, after a single reading of 
al-KhwarizmI's book by at least two mathematicians independently 
of each other, Abu Kiimil ShujaC and Sinan ibn al-FatQ.8 The latter 
explicitly formulated the general concept of a positive integer power. 
It seems, then, that if al-KhwarizmI limited the usage of algebraic terms 
to two, it was not the result of a misunderstanding of the higher powers 
of the unknown, but reflects a whole concept of algebra, its domain, 
and its scope. It is equally necessary to return to the constituent concepts 
of algebraic theory in order to understand al-KhwarizmI's intention and 
at the same time grasp the sense and the import of this deliberate lim­
itation to primitive terms. 

The principal concepts used by al-KhwarizmI are first and second­
degree equations, the related binomials and trinomials, the normal form, 
the algorithmic solution, and the demonstrability of the solution formulae. 
However, if one wishes to understand how these concepts are realized 
and coordinated in the original algebraic theory, the best method is a rapid 
perusal of al-KhwarizmI's explanation. Having introduced the terms of 
his theory, he writes: "Of these three types, some can be equal to others, 
as when you say: squares* are equal to roots, squares are equal to a 
number, roots are equal to a number." (Musharrafa and Ahmad, eds., 
1939, p. 17) He continues: "I have found that these three types -
al-tJurub, modus - which are the roots, the squares and the numbers 
combine, and that there are therefore three composite kinds - ajnas 
muqtarina, genera composita - which are squares, plus roots equal a 
number; squares plus a number equal roots; roots plus a number equal 
squares" (Musharrafa and Ahmad, eds., 1939, p. 18 and Latin transla­
tion, Libri, 1967, p. 255). It can then be seen that al-KhwarizmI retains 
three binomial equations and three trinomial equations: 

ax2 = bx, ax2 = c, bx = c; 
a~ + bx = c, ~ + C = bx, ~ = bx + c. 

Even at this stage, al-KhwarizmI's text can be seen to be distinct 
not only from the Babylonian tablets, but also from Diophantus' 

* square: mal (the square of the unknown). 
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Arithmetica. It no longer concerns a series of problems to be resolved, 
but an exposition which starts with primitive terms in which the 
combinations must give all possible prototypes for equations, which 
henceforward explicitly constitute the true object of study. On the other 
hand, the idea of an equation for its own sake appears from the 
beginning and, one could say, in a generic manner, insofar as it does 
not simply emerge in the course of solving a problem, but is specifi­
cally called on to define an infinite class of problems. To gauge the extent 
of the breakthrough, it is sufficient to recall a survival of the ancient 
tradition in al-KhwarizmI's book. Having found the value of the 
unknown, he concludes by giving that of the square. This appears to 
derive from a tradition which was not concerned with the study of 
equations but with the solution of problems - with finding, for example, 
a square, such that its product by a given number is equal to its root 
by another given number. 

In this situation it might be anticipated that al-Khwarizml's exposi­
tion would evolve in an ever more general manner. Indeed, a second 
stage of generality is attained when the notion of normal form is 
introduced. AI-KhwarizmI requires the systematic reduction - yarudd, 
reducere - of each equation to the corresponding regular form. For 
the fourth equation, for example, he writes: "In the same way, if one 
postulates two squares, or three, or more or less, reduce that to one square, 
and reduce the roots and numbers found at the same time to that to which 
you have reduced the squares." (Musharrafa and Ahmad eds., 1939, 
p. 19) This is true, in particular, for trinomial equations: 

x2 + px = q ~ = px + q ~ + q = px. 

Everything is therefore positioned to allow the establishment of 
algorithmic formulae to solutions. AI-KhwarizmI then deals with each 
of the three cases. The fact that the coefficients are given in no way 
diminishes the generality of the reasoning. Take the best-known case, the 
first of the three equations cited, with p = 10, q = 39. AI-KhwarizmI 
writes: "The rule in this - fabiibuhu, cujus regula - is that you divide 
the roots into halves. In this problem five is the result, which you multiply 
by itself, you have twenty-five, you add it to thirty-nine, you have 
sixty-four; you take its root which is eight, you deduct from it half of 
the roots, which is five, and three is left, which is the root of the square 
you are looking for, and the square is nine (Musharrafa and Ahmad, eds., 
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1939, pp. 18-19: Libri, 1967, p. 255). In other words, he obtains the 
following expression: 

For the other two cases, he obtains the following expressions: 

x=~+[(~r+q]~ 

x = ~ ± [( ~ r -q ]t, . (p)2 If 2" > q. 

(1) 

(2) 

(3) 

In this last case, he condenses it: if (p/2)2 = q, "then the root of 
the square is equal to half of the roots, exactly, without surplus or 
diminution"; if (p/2)2 < q, "then the problem is impossible - Fa-al­
masJala musta/:tfla, tunc quaestio est Jmpossibilis." (Musharrafa and 
Ahmad, eds., 1939, pp. 20-21; Libri, 1967, p. 257) To conclude this 
chapter, al-KhwarizmI writes: 

These are the six types which I mentioned at the beginning of my book, I have finished 
the explanation and I have stated that there are three types, the roots of which are not 
divided into halves. I have shown the rules for these - qiyasahli, regular - and their 
necessity - i(lrirarahii, necessitas. Concerning those of the three remaining kinds, the roots 
of which must be divided into two, I have explained them with correct reasons (bi­
abwab ~al;lf/.la), and I have invented for each a figure by which the reason for the division 
can be recognized. (Musharrafa and Ahmad eds., 1939, p. 21.) 

AI-KhwarizmI demonstrates the different formulae not only alge­
braically with the aid of figures, as he writes - ~ura, forma - that is, 
by means of the notion of the equality of surfaces. Each of these demon­
strations is presented by al-KhwarizmI as the "cause" - cilia - of the 
solution. This treatment was very probably inspired by recent knowledge 
of the Elements. In addition, al-KhwarizmI not only requires each case 
to be demonstrated, but occasionally proposes two demonstrations for 
a single type of equation. Such requirements adequately illustrate the 
extent of progress and certainly distinguish al-KhwarizmI from the 
Babylonians, but also, in his systematic approach, from Diophantus. This 
brief summary shows how al-KhwarizmI's exposition evolves, and 
that he handles earlier concepts. All problems dealt with by means of 
algebra must be reduced to an equation, a single unknown, and rational 
positive coefficients of almost second degree. Such is the only equation 
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admissible in al-KhwarizmI's book. Algebraic procedures, transposi­
tion and reduction, are then applied so that the equation may be written 
in a regular form. The procedures then make the idea of the solution 
as a simple question of decision possible: an algorithm for each class 
of problem. The formula for the solution is then justified mathemati­
cally with the help of a protogeometric demonstration. AI-KhwarizmT 
then finds himself in a position to write that everything stemming from 
algebra "must lead you to one of the six types which I have described 
in my book" (Musharrafa and Ahmad, eds., 1939, p. 27). 

AI-KhwarizmI's exposition is followed by four brief chapters dedi­
cated to the study of certain aspects of the application of elementary laws 
of arithmetic to the most simple expressions of algebra. He studies, in 
order, multiplication, addition and subtraction, and the division and 
extraction of the square root. For example, this is what he proposed to 
show in his short chapter on multiplication: "how to multiply objects 
[the unknown] which are roots, by each other, if they are single, or if 
they are added to a number, or if a number is subtracted from them" 
(Musharrafa and Ahmad, eds., 1939, p. 27), that is to say, products of 
the following type: 

(a ± bx) (c ± dx) a, b, c, dE (It. 

These chapters are far more important for the intention behind them 
than for the results that they enclose. If one considers al-KhwarizmI's 
declarations, the position that he gives these chapters (immediately after 
the theoretical study of the quadratic equation), and finally the autonomy 
conferred on each, it appears that the author wished to undertake the study 
of algebraic calculation for its own sake, that is, the properties of 
binomials and trinomials considered in the preceding section of the book. 
However rudimentary it may seem, this study nevertheless represents the 
first attempt at algebraic calculation per se, since the elements of this 
arithmetic do not simply emerge in the course of solving different 
problems, but provide the subject of relatively autonomous chapters. 

AI-KhwarizmI's concept of algebra can now be grasped with greater 
precision: it concerns the theory of linear and quadratic equations with 
a single unknown, and the elementary arithmetic of relative binomials 
and trinomials. If al-KhwarizmI was confined to the second degree at 
best, it was simply through following the notion of solution and proof 
in the new discipline. The solution had to be general and calculable at 
the same time and in a mathematical fashion, that is, geometrically 
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founded. In fact, only a solution by means of the root answered al­
KhwarizmI's requirements. The restriction of degree, as well as that of 
the number of unsophisticated terms, is instantly explained. 

From its true emergence, algebra can be seen as a theory of equa­
tions solved by means of radicals, and of algebraic calculations on 
related expressions, before the notion of the general polynomial had been 
formulated. This idea of algebra lasted long after al-KhwarizmI's death. 
His immediate successors were only concerned with the study of higher­
degree equations, which could nevertheless be reduced to second-degree 
equations. Others would be tempted by the solution of cubic equations 
by radicals. AI-Khayyam's refusal to accept the solution of a cubic 
equation by the intersection of curves as algebraic (a definition he 
reserves for the solution by radicals) provides further evidence of al­
KhwarizmI's influence. 

After his theoretical chapters al-KhwarizmI returns to the different 
applications of the theory, arithmetic or geometric, most of which are 
now based on the generality of the theory. In each case he endeavoured 
to transpose the problem into algebraic terms in order to reduce it to 
demonstrated types of equation. It is not until the second section of the 
book that he meets certain problems of Diophantine analysis.9 

It would be useless to look for a similar theory before al-KhwarizmI. 
Certainly it is possible to find one or another of his concepts in certain 
texts of Antiquity, or late Antiquity, but they are never found together 
and are never bound into a structure such as his. It is precisely this 
illustrated theoretical structure that explains the apparent technical 
weakness in al-KhwarizmI's algebra and the mathematician's intention­
ally innovative terminology. Compared with Diophantus' Arithmetica, 
for example, al-KhwarizmI's book appears to describe no more than an 
elementary algebraic technique; but this simplicity corresponds exactly 
to the limitations imposed by the constitution of the theory. Similarly, the 
terminology was designed to create a language capable of translating, 
without distinction, geometric and arithmetic terms. Thus, in expressing 
a requirement of the theory, the terms reflect the desire to distinguish 
the new knowledge. 

No description of al-KhwarizmI's algebra is complete without indi­
cating where its fertility lies. A science is defined not only by the 
procedures it develops, but also by its cumulative power, the obstacles 
generated and confronted - in short by all the channels of research that 
it is able to open. It is precisely in this area that al-KhwarizmI stands 
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out from all possible predecessors: he alone determined the scope of a 
whole vein of algebraic research which has not yet been exhausted. 
This historical dimension of al-KhwarizmI's algebra must therefore be 
examined. 

III 

The different elements ·of classical algebra can be traced already in al­
KhwarizmI's book. But to develop the traces effectively and to give body 
to al-KhwarizmI's concept of algebra, his successors had to diverge 
from his tracks. New inroads had to be made not only to surmount 
theoretical and technical problems which limited the execution of his 
programme (the resolution of the cubic equation by radicals, for 
example), but also to reorientate the project in a more arithmetical direc­
tion for the development of abstract algebraic calculation. One can 
therefore isolate two new departures for algebra and two areas of research 
undertaken following al-KhwarizmI's lead but in the opposite direc­
tion. The first was arithmetic, the second geometric; both modified the 
nature of the discipline profoundly. (Of course, I can only briefly outline 
the results of the arithmetic tradition of algebra.) 

Shortly after al-KhwarizmI's death, perhaps even during his lifetime, 
attempts were made to follow his lead. While Ibn Turk adopted the theory 
of equations to give demonstrations (Sayili, 1962, in particular the Arabic 
text, pp. 144ff.), still protogeometric but firmer, aI-Mahan! translated 
certain biquadratic problems from Book X of the Elements and cubic 
problems from ArchimedeslO into algebraic terms. Equally prompt was 
the extension of the notion of algebraic power. There are two testimonies 
confirming that this effort had been suggested by a reading of al­
KhwarizmI's book: that of AbU Kamil, whose work is known and has 
been analyzed, and that of Sinan ibn al-Fatl) (Youschkevitch, 1976, pp. 
52 ff.). The latter studied trinomial equations which, if divided by a power 
taken from the unknown, are brought into the realm of al-KhwarizmI's 
equations, in other words, equations which consist of the following terms: 

All these findings, especially AbU Kamil's improved study ofrational 
positive numbers, as well as other results obtained by algebraic mathe­
matics in the study of algebraic irrationals, and finally the translation 
of Diophantus' Arithmetica, coincide with the development of the project 
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of the "arithmetization of algebra" (as it has been called) by al-KarajI. 
It is concerned first, according to the words of a successor of al-KarajI, 
al-SamawJal, "with operating on unknowns using all the arithmetical 
tools, in the same way as the arithmetician operates on the known", 
and with opting more and more for algebraic demonstrations at the 
expense of geometric demonstrations. Thus the movement is towards a 
systematic application of elementary arithmetic procedures to algebraic 
expressions. This application was made possible by the first elabora­
tion in general terms of the idea of the polynomial. It is this application, 
evident in al-KarajI's work, which has permitted the extension of abstract 
algebra and the organization of the algebraic exposition around dif­
ferent arithmetic operations successively applied to algebraic expressions. 
Furthermore, it is in this way that the best treatises on classical algebra 
have been presented since then. It has been shown elsewhere in detail 
how such a project was constituted and what the principal results were 
(cf. infra, 1.2 and 1.3). 

It would be too lengthy to enumerate the consequences of this 
arithmetization of algebra here; but it should be remembered that algebra 
itself is affected - the theory of numbers, numerical analysis, and the 
resolution of numerical equations, as well as rational Diophantine analysis 
and even the logic and philosophy of mathematics. I would like to 
conclude here on the theory of the equation itself in order to show, with 
the help of unpublished and unknown documents, that, contrary to the 
accepted idea, the successors of al-KarajI had in fact attempted an 
algebraic solution to the cubic equation. 

First, with regard to the theory of equations, in al-Fakhrf as well 
as what has already been seen in Sinan ibn al-FatQ's work, the fol­
lowing equations can be found: 

a;(-n + bX' = c ax2n + c = bX' bX' + C = ax2n. 

But al-KarajI himself says nothing about cubic equations (Rashed, 1986). 
It was one of his successors, al-SulamI, who suggested that the question 
preoccupied algebraist mathematicians in the tradition of al-KarajI. He 
himself envisages two possible kinds: 

x 3 + a;(- + bx = c and x3 + bx = ax2 + c, 

however, he imposes the condition b = (a2/3). He therefore gives a true 
positive root for each equation: 
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( a3 ) .! a (a3 ) 1. a 
x = 27 + c 3 - 3" and x = c - 27 3 + 3" . 

We may, it seems, piece together the mathematician's progress in the 
following manner: by a related transformation, he restores the equation 
to its normal form. But instead of finding the discriminant, he annuls 
the coefficient of the first power of the unknown in order to bring the 
problem to that of the extraction of the cubic root. Thus, for example, 
for the first equation x -7 y - a/3 is taken for an affine transformation; 
the equation can be rewritten as follows: 

l + PY - q = 0, 

with P = b - a2/3 and q = c + a3/27 + (b a/3 - a3/9). For 
b = a2/3, it comes to / = c + a3/27, whence the value of x. It should 
be remembered that the role of the discriminant was identified by Sharaf 
aI-DIn al-TusI in the particular case x3 - bx + C = 0 (cf. infra, III). 

As we have seen in the preceding pages, it was therefore al-KhwarizmI 
who established the unity of algebra, not merely because of the gener­
ality of mathematical entities which the discipline deals with, but 
above all because of the generality of his procedures. It is a question 
of successive operations designed to turn a numerical or geometrical 
problem into one of equations expressed in normal form, and of equa­
tions which lead to the canonical formulae of solutions, which, moreover, 
must be demonstrable and calculable. 

The algebra worked out by al-KhwarizmI is a science of equations and 
algebraic calculations on related binomials and trinomials, an autonomous 
discipline which commanded already its proper historical perspective and 
carried with it the potential of a first reform, the arithmetization of 
algebra. 

AI-KhwarizmI's contribution is clearly irreducible, reflecting the new 
type of mathematical rationality. If attempts to discover the origins of 
his algebra continue to fail, this failure may be as much the result of 
insufficient insight in analysis as of a lack of historical information, 
and of an uncontained regression in linguistic and ideological terms. 
Rather than ask what al-KhwarizmI may have read, it would be prefer­
able to enquire how he conceived of what none of his predecessors had 
been able to conceive. 
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NOTES 

1. This is the name of the author according to the testimonies of historians, bibliogra­
phers and mathematicians. AI-TabarI in his Tiirikh al-rusul wa al-mulak (Abii al-Fa~l, 
1966) gave this name in relating the events of the year 210 of the Hegira: "Mul)ammad 
ibn Miisa al-KhwarizmI is reported to have said ... " (vol. VIII, p. 609). However, 
speaking of the events of the year 232 of the Hegira, he gave a list of the names 
of astronomers present at the death of al-Wathiq: "Amongst those present were: 
al-l:Iasan b. Sahl, the brother of al-Fa~1 b. Sahl, and al-Fa~1 b. Isl;1aq, al-HashimI, 
Ismacn b. Nawbakht and Mul;1ammad ibn Miisli al-Khwlirizmi al-Majiisi al-Qutrubbulli 
and Sanad, the companion of Mul;1arnmad b. al-Haytham and all those who were inter­
ested in the stars". If we compare al-TabarI's testimonies, and taking into account 
the consensus of other authors, there is no need to be an expert on the period nor a 
philologist, to see that al-Tabari' s second citation should read: "Mul;1arnmad ibn Miisli 
al-Khwlirizmi and al-Majiisi al-Qutrubbulli ... ", and that there are two people (al­
Khwlirizmi and al-Majiisi al-Qutrubbulli); the letter "wa" was omitted in the early 
copy. 

This would not be worth mentioning if a series of conclusions about al­
KhwlirizmI's personality, occasionally even the origins of his knowledge, had not 
been drawn. In his article on al-Khwlirizmi in the Dictionary of Scientific Biography, 
G. J. Toomer, with naive confidence, constructed an entire fantasy on the error which 
cannot be denied the merit of making amusing reading. 

2. Abii Kamil described al-Khwlirizmi as "The one who was the first to succeed in a 
book of algebra and al-muqiibala and who pioneered and invented all the princi­
ples in it". Cf. Abii Kamil, Istanbul, Beyazit, MS Kara Mustafa 379, f. 2'. 

Cf. Sinan ibn ai-Fall), who only mentioned the name of al-Khwlirizmi in the 
introduction to his small work and asserted that the science was his: "Mul;1ammad ibn 
Miisa al-Khwlirizmi wrote a book which he called "algebra and al-muqiibala". Still 
later, al-l:Iasan b. Yiisuf on al-KhwlirizmI wrote: "He was the first in the Islamic world 
to discover this science; consequently he was recognized as the Imam of arithmeti­
cians and the master of that science". Lastly Ibn ai-Malik al-DimashqI may be 
cited: "You must understand that this science is the invention of that accomplished 
scholar Mul;1ammad ibn Miis!! al-Khwlirizmi". Evidence to this effect is abundant and 
we could enumerate many other examples. 

3. l:IajjI KhalIfa cited a passage from a book by Abii Kamil al-Wa~iiya bi-al-jabr; 
Abii Kamil mentioned another book by him and wrote: "I have established, in my 
second book, proof of the authority and precedent in algebra and al-muqiibala of 
Mul;1ammad ibn Miisa al-KhwlirizmI, and I have answered that impetuous man Ibn 
Barza on his attribution to cAbd al-l:IamId, whom he said was his grandfather" 
(KhalIfa, 1943, vol. 2, pp. 1407-1408). 

4. Nothing of great importance has emerged to clarify the history of mathematics in 
the first two centuries of the Hegira. In our study (cf. infra, IV.3) we showed that 
linguists, lexicographers, and in particular ai-KhalIl b. A~mad (d. circa 786) pos­
sessed several combinatorial rules. It should not, however, be concluded that they 
were familiar with combinatorial analysis as such. The rules were applied but neither 
stated nor demonstrated. According to Ibn Khaldiin's later reference in his 



20 CHAPTER I 

Prolegomena, some elementary progressions can be found. Examination of other 
documents available in the fields of literature and philosophy etc. for lack of math­
ematical works, provide information too incomplete to lead to a decisive conclusion. 
The now lost arithmetic works of mathematicians like al-KhwarizmI himself in the 
third century of the Hegira are quite different. He drafted a book, Kitfib al-jamC wa 
al-tafriq which is as yet untraced but is mentioned by Abu Kiimil in his Algebra 
(MS Kara Mustafa, 379, f. 110). If the contents of his work can be re-established, 
through patient effort, the direction of mathematics at that time could be estab­
lished. But this is a privilege for the future. 

5. S. Gandz saw the origins of al-KhwarizmI's section of "the measurement" of surfaces 
and volumes in this book (cf. Gandz, 1932). G. B. Sarfatti, on the other hand, 
located this text after al-KhwarizmI (Sarfatti, 1968). 

6. Cf. luschkewitsch (1964a). This work of al-KhwiirizmI on arithmetic should not be 
confused with another by the same author, quoted by Abu Kiimil (see n. 4). In the 
latter al-KhwarizmI evidently deals with arithmetical problems. 

7. Banu Musii, Kitfib fi MaCrifat Misfi/;lat al-Ashkiil; cf. the (poor) transcription given 
in Rasfi'il al-fusi (Hyderabad, ed., 1940), pp. 19ff. 

8. Siniin ibn ai-Fat!} (Cairo, National Library, MS Riyii9iyyiit 260, ff. 95'-104V) intro­
duced the power of the unknown in a general way. He wrote: " ... let us call the 
first of these number, the second root, the third square (mfil), the fourth cube 
(mukaCCab), the fifth square-square, the sixth midiid, the seventh square cube, then 
you will have the eighth proportion, add the ninth, and as far as you wish. It is 
permissible to change the names, once you understand their intention. But as it is 
usual to give these names, we will conform. 

This is an example to show what has been described, following Indian mathe­
matics 

one ten hundred thousand hundred thousand thousand thousand 
number root square cube square-square midfid square-cube 
eight proportion ninth proportion 

(1) Siniin ibn ai-Fat!} claimed precedence for this generality; he wrote: "None of 
my predecessors in this science, whom I have heard of, has written a greater 
work in order to name 'the powers'. I have been pleased to compose this into 
a book wherein it is shown how to develop these names". 

(2) If the term midfid is Arabic in origin, it must derived from the root mdd, which 
signifies the elongation of something, or the extension of one thing by another. 
It can also indicate the plural of mudd, a kind of measurement which 
originally signified the holding out of hand for food. The reason for such a choice 
to signify xl, or the sixth position, is not clear. It is not impossible that it was 
borrowed from Persian to indicate the sixth position. 

(3) Ibn ai-Fat!} makes the power nih correspond to the power n + 1. 
(4) Finally, the definition x6 is multiplicative, contrary to all additive definitions 

known in Arabic. 
9. This kind of problem is encountered in the chapter on wills. Cf. for example, 

Musharrafa and Ahmad, eds. (1939), pp. 76ff. 
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10. Cf. al-MahanI's commentary on Book X of the Elements, Paris, Biblioth~que 
Nationaie, fonds arabe MS 2457 (180v-187V), where 39x2 = X4 + 225/4 can be 
found. AI-Khayyam reported that al-MahanI: "was led to use algebra to analyse 
the lemma used by Archimedes, considering it as authorized in proposition 4 of 
the second book of his work on The Sphere and the Cylinder'. AI-Khayyam con­
tinued, "AI-MahanI arrived at cubes, squares and numbers forming an equation that 
he was unable to solve ... " Cf. Rashed and Djebbar, eds. (1981), p. 11. 



2. AL-KARAJI 

Virtually nothing is known of al-KarajI's life; even his name is not 
certain. Since the translations by Woepcke and Hochheim he has been 
called al-KarkhI, a name adopted by historians of mathematics (Woepcke, 
1853; Hochheim, 1878-80). In 1933, however, Giorgio Levi della Vida 
rejected this name for that of al-KarajI (1933, pp. 264ff). This debate 
would have been pointless if certain authors had not attempted to use 
the name of this mathematician to deduce his origins: Karkh, a suburb 
of Baghdad, or Karaj, an Iranian city. In the present state of our knowl­
edge, della Vida's argument is plausible but not decisive. On the basis 
of the manuscripts consulted it is far from easy to decide in favour of 
either name. l Turning to the "commentators" does not take us any further. 2 

For example, the al-Bahir fi al-jabr of al-SamawJal cites the name al­
KarajI, as indicated in MS Aya Sofya 2718. On this basis some authors 
have sought to derive a definitive argument in favour of this name 
(Anbouba, ed., 1964, p. 11). On the other hand, another hitherto unknown 
manuscript of the same text (Esat Efendi 3155) gives the name al-KarkhL3 

Because the use of the name al-KarajI is beginning to predominate -
for no clear reasons - and because we do not wish to add to the already 
great confusion in the designation of Arab authors, we shall use the name 
al-KarajI - refraining from any speculation designed to infer our subject's 
origins from this name. It is sufficient to know that he lived and produced 
the bulk of his work in Baghdad at the end of the tenth century and 
the beginning of the eleventh and that he probably left that city for 
the "mountain countries,,4 where he appears to have ceased writing 
mathematical works in order to devote himself to composing works on 
engineering, as indicated by his book on the drilling of wells. 

AI-KarajI's work holds an especially important place in the history 
of mathematics. Woepcke remarked that it "offers first the most complete 
or rather the only theory of algebraic calculus among the Arabs known 
to us up to the present time" (Woepcke, 1853, p. 4). It is true that 
al-KarajI employed an entirely new approach in the tradition of the 
Arab algebraists - al-KhwarizmI, Ibn al-Fati), Abu Kamil- commencing 
with an exposition of the theory of algebraic calculus (cf. infra, IV.3). 

22 
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The more or less explicit aim of this exposition was to find means of 
realizing the autonomy and specificity of algebra, so as to be in a position 
to reject, in particular, the geometric representation of algebraic opera­
tions. What was actually at stake was a new beginning of algebra by 
means of the systematic application of the operations of arithmetic to 
the interval [0, 00]. This arithmetization of algebra was based both on 
algebra, as conceived by al-KhwarizmI and developed by Abu Kiimil and 
many others, and on the translation of the Arithmetica of Diophantus, 
commented on and developed by such Arab mathematicians as AbU al 
WarnJ al-BtizjanI (Medovoij, 1960). In brief, the discovery and reading 
of the arithmetical work of Diophantus, in the light of the algebraic 
conceptions and methods of al-KhwarizmI and other Arab algebraists, 
made possible a new departure in algebra by al-KarajI, the author of 
the first account of the algebra of polynomials. 

In his treatise on algebra, al-Fakhrf, al-KarajI first presented a 
systematic study of algebraic exponents, then turned to the application 
of arithmetical operations to algebraic terms and expressions, and 
concluded with a first account of the algebra of polynomials. He studied 
(see Woepcke, 1853, p. 48) the two sequences x, :r?, ... , x9, ... ; lIx, 
lIx2, ••• , lIx9, ••• and, successively, formulated the following rules: 

1 1 1 1 
~::r?=X2:X3='" (1) 

1 1 x2 xn 
~ : :r? = ~ ... = xn-1 : xn = x n-1 (2) 

1 1 1 1 1 1 

1 1 
(3) 

m = 1,2,3, .. . 

1 x2 1 3 r -·r =-, -·X =-, ... , 
n = 1, 2, 3, .. . 

x x x x 
(4) 

In order to appreciate the importance of this study, it is necessary to 
see how al-KarajI's more or less immediate successors exploited it. 
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For example, al-Samaw)al (Rashed and Ahmad, eds., 1972, pp. 20ff of 
Arabic text) was able, on the basis of al-KarajI's work, to utilize the 
isomorphism of what would now be called the groups (~, +) and 
([x"; n E ~], x) in order to give for the first time, in all its generality, 
the rule equivalent to X"x" = X"+n, where m, n E ~. 

In applying arithmetical operations to algebraic terms and expressions, 
al-KarajI first considered the application of these rules to monomials 
before taking up "composed quantities", or polynomials. For multipli­
cation he thus demonstrated the following rules: (1) (alb)·e = aclb and 
(2) alb· eld = ac/bd, where a, b, e and d are monomials. He then treated 
the multiplication of polynomials, for which he gave the general rule. 
He proceeded in the same manner and with the same concern for the 
symmetry of the operations of addition and subtraction. Yet this algebra 
of polynomials was uneven. In division and the extraction of roots 
al-KarajI did not achieve the generality already attained for the other 
operations. Hence he considered only the division of one monomial by 
another and of a polynomial by a monomial. Nevertheless, these results 
permitted his successors - notably al-Samaw)al - to study, for the first 
time to our knowledge, divisibility in the ring [Q(x) + Q(lIx)] and the 
approximation of whole fractions by elements of the same ring (Rashed 
and Ahmad, eds., 1972). As for the extraction of the square root of a 
polynomial, al-KarajI succeeded in giving a general method - the first 
in the history of mathematics - but it is valid only for positive coeffi­
cients. This method allowed al-Samaw)al to solve the problem for a 
polynomial with rational coefficients or, more precisely, to determine the 
root of a square element of the ring [Q(x) + Q(1lx)] (Rashed and Ahmad, 
eds., 1972, p. 60 of the Arabic text). AI-KarajI's method consisted in 
giving first the development of (XI + X2 + X3)2 - where Xl' X2 and X3 are 
monomials - for which he proposed the canonical form 

x~ + 2XlX2 + (.xi + 2xIX3) + 2x:zX3 + x~. 

This last expression is itself, in this case, a polynomial ordered 
according to decreasing powers. Al-KarajI then posed the inverse 
problem: finding the root of a five-term polynomial. He therefore con­
sidered this polynomial to be of the canonical form and proposed two 
methods. The first consisted of taking the sum of the roots of two extreme 
terms - if these exist - and the quotient of either the second term divided 
by twice the root of the first or of the fourth term divided by twice the 
root of the last.5 The second method consisted in subtracting from the 
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third term twice the product of the root of the first term times the root 
of the last term, then the root of the remainder from the subtraction is 
added to the roots of the extreme terms. Great care must be exercised 
here. This form is not restricted to a particular example, and al-KarajI's 
method, as can be seen in al-BadfC, is general (Rashed and Ahmad, 
eds. 1972). 

Again with a view to extending algebraic computation, al-KarajI 
pursued the examination of the application of arithmetical operations 
to irrational terms and expressions. 

"How multiplication, division, addition, subtraction, and the extrac­
tion of roots may be used [on irrational algebraic quantities]" (Anbouba, 
ed., 1964, p. 31 of the Arabic text). This was the problem posed by 
al-KarajI and used by al-SamawJal as the title of the penultimate chapter 
of his work on the use of arithmetical tools on irrational quantities. The 
problem marked an important stage in al-KarajI's whole project and 
therefore also in the extension of the algebraic calculus. Just as he had 
explicitly and systematically applied the operations of elementary 
arithmetic to rational quantities, al-KarajI, in order to achieve his 
objectives, wished to extend this application to irrational quantities in 
order to show that they still retained their properties. This project, while 
conceived as purely theoretical, led to a greatly increased knowledge 
of the algebraic structure of real numbers. Clear progress indeed, 
but to make it possible it was necessary to risk a setback - a risk at 
which some today would be scandalized - in that it did not base the 
operation on the firm ground of the theory of real numbers. The 
arithmetician-algebraists were only interested in what we might call the 
algebra of !R and did not attempt to construct the field of real numbers. 
Here progress was made in another algebraic field, that of geometrical 
algebra, later revived by al-Khayyam and Sharaf aI-DIn al-TusI (Rashed, 
ed., 1986). In the tradition of this algebra al-KarajI and al-SamawJal could 
extend their algebraical operations to irrational quantities without 
questioning the reasons for their success or justifying the extension. 
Because an unfortunate lack of any such justification gave the impres­
sion of a setback, al-KarajI simultaneously adopted the definitions of 
Books VII and X of the Elements. While he borrowed from Book VII 
the definition of number as "a whole composed of unities" and of unity 
- not yet a number - as that which "qualifies by an existing whole", it 
is in conformity with Book X that he defined the concepts of incom­
mensurability and irrationality. For Euclid, however, as for his com-



26 CHAPTER I 

mentators, these concepts only apply to geometrical objects or, in the 
expression of Pappus, they "are a property which is essentially geo­
metrical". "Neither incommensurability nor irrationality", he continued, 
"can exist for numbers. Numbers are rational and commensurable" 
(Thomson, ed., 1930, p. 193). 

Since al-KarajI explicitly used the Euclidean definitions as a point 
of departure, it would have been useful if he could have justified his 
use of them on incommensurable and irrational quantities. His works may 
be searched in vain for such an explanation. The only justification to 
be found is extrinsic and indirect and is based on his conception of 
algebra. Since algebra is concerned with both segments and numbers, the 
operations of algebra can be applied to any object, be it geometrical or 
arithmetical. Irrationals as well as rationals may be the solution of the 
unknown in algebraic operations precisely because they are concerned 
with both numbers and geometrical magnitudes. The absence of any 
intrinsic explanation seems to indicate that the extension of algebraic 
calculation - and therefore of algebra - needed for its development to 
forget the problems relative to the construction of IR and to surmount any 
potential obstacle, in order to concentrate on the algebraic structure. 
An unjustified leap, indeed, but a fortunate one for the development of 
algebra. This is the exact meaning of al-KarajI when he writes, without 
transition immediately after referring to the definitions of Euclid, "I show 
you how these quantities [incommensurables, irrationals] are transposed 
into numbers" (Anbouba, ed., 1964, p. 29 of the Arabic text). 

One of the consequences of this project, and not the least important, 
is the reinterpretation of Book X of the Elements (Van der Waerden, 1956; 
Vuillemin, 1962; Dedron and Itard, 1969). This had until then been 
considered by most mathematicians, even by one so important as Ibn 
al-Haytham, as merely a geometry book. For al-KarajI its concepts 
concerned magnitudes in general, both numerical and geometric, and 
by algebra he classified the theory in this book in what was later to be 
known as the theory of numbers. To extend the concepts of Book X of 
the Elements to all algebraic quantities al-KarajI began by increasing their 
number. "I say that the monomials are infinite: the first is absolutely 
rational, five for example, the second is potentially rational, as the root 
of ten, the third is defined by reference to its cube as the side of twenty, 
the fourth is the medial defined by reference to the square of its square, 
the fifth is the square of the quadrato-cube, then the side of the cubo­
cube and so on to infinity" (Anbouba, ed., 1964, p. 29 of the Arabic text). 
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In the same way binomials can also be split infinitely. In this field, as 
in so many others, al-SamawJal is continuing the work of al-KarajI. At 
the same time one contribution belongs to him alone and this is his 
generalization of the division of a polynomial with irrational terms (see 
introduction, Rashed and Ahmad, eds., 1972). He thus developed the 
calculus of radicals introduced by his predecessors. At the beginning 
of al-Badfe (Anbouba, ed., 1964, pp. 32ff. of the Arabic text and 
pp. 36ff. of French introduction) is a statement - for the monomials Xl> 

X2 and the strictly positive natural integers, m, n - of the rules that make 
it possible to calculate the following: 

XI~; ~ .~; ~.ryx; 

~/VX;;~/ryx; 

~±VX;. 
AI-Karaji next discussed the same operations carried out on poly­

nomials and gave, among others, rules that allow calculation of expres­
sions such as 

In addition he attempted, unsuccessfully. to calculate 

-.JX;+iX;+iX; 
In the same spirit al-KarajI took up binomial developments. In al­

Fakhrf (Woepcke, 1853, p. 58) he gives the development of (a + b)3, 
and in al-Badrc (Anbouba, ed., 1964, p. 33 of Arabic text) he presents 
those of (a - b)3 and (a + b)4. In a long text of al-KarajI reported by 
al-SamawJal are the table of binomial coefficients, its formation law 

n 
c:: = C::=i + C;_I, and the expansion (a + bt = I. C::an-mbn for integer 

m=O 
n (Rashed and Ahmad, eds., 1972). 

To demonstrate the preceding proposition as well as the proposition 
(abt = anbn, where a and b are commutative and for all n E ~, 

al-SamawJal used a slightly old-fashioned form of mathematical induc-
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tion. Before proceeding to demonstrate the two propositions he shows 
that multiplication is commutative and associative - (ab)(cd) = (ac)(bd) 
- and recalls the distributivity of multiplication with respect to addition 
- (a + b)t.. = at.. + bt... He then uses the expansion of (a + bt- I to prove 
the identity for (a + bt and that of (abt- I to prove the identity for 
(abt. It is the first time, as far as we know, that we find a proof that 
can be considered the beginning of mathematical induction. 

Turning to the theory of numbers, al-KarajI pursued further the task 
of extending algebraic computation. He demonstrated the following 
theorems (Woepcke, 1853, pp. 59ff.): 

l i= (n2+n) =n(~+::) 
i=1 2 2 2 

(1) 

~.2 ~. (2n 1) 
""' l = ""' l -+- . 
i=1 i=1 3 3 

(2) 

Actually al-KarajI did not demonstrate this theorem; he only gave the 
equivalent form 

~'2/~' (2n 1) ""' l ""' l = -+- . 
i=1 ;=1 3 3 

The algebraic demonstration appeared for the first time in al-SamawJal 
(Rashed and Ahmad, eds., 1972. pp. 56ff.): 

(3) 

l i3 = ( l i)2 
i=1 ;=1 

(4) 

n-l n 
L (2i + 1)(2i + 3) + L 2i(2i + 2) 

i=O i=1 
(5) 

( 2n+2 )( 2 5 ) = i~1 i 3" [2n + 2] -"3 + 1 

n-2 n-l n-I 

L i(i + 1)(i + 2) = L i3 - L i 
;=1 i=1 ;=1 (6) 
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For al-KarajI, the "determination of unknowns starting from known 
premises" is the proper task of algebra.6 The aim of algebra is to show 
how unknown quantities are determined by known quantities through the 
transformation of the given equations. This is obviously an analytic 
task, and algebra was already identified with the science of algebraic 
equations. One can thus understand the extension of algebraic compu­
tation and why al-KarajI's followers (Rashed and Ahmad, eds., 1972, pp. 
73ff. of the Arabic text) did not hesitate to join algebra to analysis and, 
to a certain extent, oppose it to geometry, thus affirming its autonomy 
and its independence. Since al-KhwiirizmI the unity of the algebraic 
object was no longer founded on the unity of mathematical entities 
but on that of operations. It was a question, on the one hand, of the 
operations necessary to reduce an arbitrary problem to one. form of 
equation - or, more precisely, to one of the canonical types stated by 
al-KhwarizmI - and, on the other hand, of the operations necessary to 
give particular solutions, that is, the "canons". In the same fashion 
al-KarajI took up the six canonical equations (Woepcke, 1853, pp. 64ff.) 
- ax = b, ax2 = bx, ar = b, ax2 + bx = c, ax2 + c = bx, bx + c = ax2 

- in order to solve equations of higher degree: arn + b~ = c, a~ + c 
= b~, b~ + c = arn, arn+m = b~+m + c~. 

Next, following AbU Kiimil in particular, al-KarajI studied systems 
of linear equation (Woepcke, 1853, pp. 90-100) and solved, for example, 
the system xl2 + w = s12, 2yl3 + w = s13, 5z16 + w = s16, where 
s = x + y + Z and w = 1I3(x12 + yl3 + z/6). 

The translation of the first seven books of Diophantus' Arithmetica 
revealed to al-KarajI the importance of at least two fields. Yet, unlike 
Diophantus, he wished to elaborate the theoretical aspect of the fields 
under consideration. Therefore al-KarajI benefited from both a con­
ception of algebra renewed by al-KhwiirizmI and a more developed theory 
of algebraic computation, and he was able, through his reading of 
Diophantus, to state in a general form propositions still implicit in 
Diophantus and to add to them others not initially foreseen. In al-Fakhrf, 
as in al-BadZC, by indeterminate analysis (istiqrll J ) (Woepcke, 1853, 
p. 72; Anbouba, ed., 1964, p. 62 of the Arabic text) al-KarajI meant 
"to put forward a composite quantity [that is, a polynomial or algebraic 
expression] formed from one, two, or three successive terms, under­
stood as a square but the formulation of which is nonsquare and the 
root of which one wishes to extract.,,7 By the solution in Q of a poly­
nomial with rational coefficients al-KarajI proposed to find the values 
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of x in Q such that P(x) will be the square of a rational number. In 
order to solve in this sense, for example, A(x) = ax2n + bx2n- 1, where 
n = 1, 2, 3, ... , divide by X 2n-2 to arrive at the form ax2 + bx, which 
should be set equal to a square polynomial of which the monomial of 
maximum degree is ax2 , such that the equation has a rational root. 

AI-KarajI noted that problems of this type have an infinite number 
of solutions and proposed to solve many of them, some of which were 
borrowed from Diophantus while others were of his own devising. An 
exhaustive enumeration of these problems cannot be given here. We shall 
only present the principal types of algebraic expressions of polynomials 
that can be set equal to a square (Woepcke, 1853; Anbouba, ed., 1964). 

1. Equations with one unknown: 
ax2 = u2 

ax2 + bx = u2 and in general ax2n + bx2n - 1 = u2 

ax2 + b = u2 and in general ax2n + bx2n-2 = u2 

ax2 + bx + c = u2 and in general ax2n + bx2n- 1 + CX2n -2 = u2 

ax3 + bx2 = u2 and in general ax2n+ I + bx2n = u2 

for n = 1, 2, 3 ... 

2. Equations with two unknowns: 
x2 + l = u2, x3 ± i = u2, (x2)2m ± (i)2m+l = u2 
(x2m+l)2m+l _ (lm)2m = u2. 

3. Equation with three unknowns: 
x2 + l + Z2 ± (x + y + z) = u2• 

5. Two equations with two unknowns: 

{ 
X2 + y = u2 { x2 _ Y = u2 { x3 + l = u2 

X + y2 = v2 l _ x = v2 x 3 _ y2 = v2 

{ 
X2 - l = u2 { x2 + l = u2 

x 2 + l = v2 x 2 + l ± (x + y) = v2 
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{
X + y + xl- = U2 

X + Y + l = y2. 

6. Two equations with three unknowns: 

{ xI-+z=u2 

l + z = y2. 

7. Three equations with two unknowns: 

{
xI-+l=u2 

xl- + Y = y2 

X + l = w2• 

8. Three equations with three unknowns: 

{
xI-+y=U2 {xI--y=U2 
/+Z=y2 l-z=v2 

Z2 + X = w2 Z2 - X = w2. 

{
(x + y + z) - xl- = u2 

(x + Y + z) - y2 = y2 

(x + y + z) - Z2 = w2. 
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In al-KarajI's work there are other variations on the number of 
equations and unknowns, as well as a study of algebraic expressions 
and of polynomials that may be set equal to a cube. From a compar­
ison of the problems solved by al-KarajI and those of Diophantus, it 
was found that "more than a third of the problems of the first book of 
Diophantus, the problems of the second book starting with the eighth, 
and virtually all the problems of the third book were included by al-KarajI 
in his collection." (Woepcke, 1853, p. 21.) It would be noted that 
al-KarajI added new problems. 

Two sorts of preoccupations become evident in al-KarajI's solutions: 
to find methods of ever greater generality and to increase the number 
of cases in which the conditions of the solution should be examined. 
Hence, for the equation ax!- + bx + c = u2 - although he supposes that 
its solution requires that a and c be positive squares - he considers the 
various possibilities: a is a square, b is a square, neither a nor b is a 
square in ax2 - b = u2 but bla is a square. In addition he shows that 
±(bx - c) - xl- = u2 has no rational solution unless b2/4 ± c is the sum 
of two squares (Woepcke, 1853, p. 8). 
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The same preoccupation appears in his solution of the system 
x 2 + y = u2 and l + x = v2, where he seeks first to transform x = at 
and y = bt, a > b, in order to posit (a - b)t = A.; a2t2 + bt = u2; 

b2f + at = v2, and to solve the problem by means of the demonstrated 
identity. 

1 [( u v ) 2 ( u v ) 2 ] 4' T+A. - T-A. =u-v. 

A great many other examples could be cited to illustrate al-KarajI's 
indisputable concern with generality and with the study of solutions, 
as well as a considerable number of other mathematical investigations 
and results. His most important work, however, remains the new start 
he gave to algebra, an arithmetization elicited by the discovery of 
Diophantus by a mathematician already familiar with the algebra of 
al-KhwarizmI. This new impetus was understood perfectly and extended 
by al-KarajI's direct successors, notably al-SamawJal. It is this tradi­
tion, as all the evidence indicates, of which Leonardo Fibonacci had some 
knowledge, as perhaps did Levi ben Gerson.8 

NOTES 

1. No claim for completeness is made for Utis table, because of the dispersion of the 
Arabic MSS and their insufficient classification. 

Title 

al·Fakhri 

al-Kiifi 

ai-Bad!' 

C flal Qisiib al­
jabr 

al-KarkhI 

BN Paris 2495 
Esat Efendi Istanbul 

3157 
Cairo Nat. Lib., 21 

Gotha 1474 
Alexandria 1030 

Hiisnii Pasha, 
Istanbul 257 

al-KarajI 

KoprUlii Istanbul 950 

Topkapi Sarayi, 
Istanbul A. 3135 

Damat, Istanbul 855 
Sbath Cairo 111 

Barberini Rome 36, 1 

Bodleian Library I, 
968, 3 
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lnba! al-miylih 
al-khafiyyat 

Publ. Hyderabad, 
1945, on the basis 
of the MSS. of 
the library of Aya 
Sofya and of the 
library of 
Bankipore. 
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2. One encounters the same difficulties when one considers the MSS of the later Arab 
commentators and scholars. Thus in the commentaries of al-ShahraziirI (Damat 855) 
and of Ibn al-Shaqqaq (Topkapi Sarayi A 3135), both of which refer to al-Kliji, 
one finds the name al-KarajI, whereas in MS Alexandria 1030 one finds al-Karkhl 

3. This MS was classified as anonymous until the present author identified it as being 
the al-Blihir of al-Samaw)al. See Rashed (1971); and Rashed and Ahmad, eds. (1972). 

4. In Arabic dictionaries, the "mountain countries" include the cities located between 
"Azerbaijan, Arab Irak, Khurasan, Persia and the country of Deilem (a land bordering 
the Caspian Sea)." 

5. For example, for the first method, to find the root of x6 + 4r + (4x4 + 6x3) + 12r 
+ 9, one takes the roots of x3 and 9; one then divides 4r by x3 or 12x2 by 3, in 
both cases one obtains 4r. The root sought is thus (r + 2r + 3). 

For the second method, take x8 + 2x6 + Ilx4 + lOr + 25. One finds the roots of 
x8 and 25; X4 and 5, then subtracts as indicated to obtain X4, the root of which is r. 
The root sought is thus (x4 + r + 5). See Woepcke (1853, p. 55) and Anbouba, ed. 
(1964, p. 50 of the Arabic text). 

6. Woepcke (1853, p. 63) with translation improved by comparison with MSS of the 
Biblioth~qu:e Nationale, Paris. 

7. Woepcke (1853) with translation improved by comparison with MSS of the 
Biblioth~que Nationale, Paris. 

8. See the comparison by Woepcke (1853) and Sarton (1927, p. 596). 



3. THE NEW BEGINNINGS OF ALGEBRA IN THE 

ELEVENTH AND TWELFTH CENTURIES 

The history of classical algebra is still sometimes related as the suc­
cession of three events: the constitution of the theory of quadratic 
equations, the more or less general solution of the cubic equation, the 
introduction and development of algebraic symbolism. The name of 
al-KhwarizmI is frequently associated with the first event, mathemati­
cians of the Italian school, notably Tartaglia and Cardano with the second, 
and lastly, the names of Viete and Descartes with the third. 

By the nineteenth century, Woepcke's works on al-KarajI and al­
Khayyam, and more recently Paul Luckey's work on al-KashI, had shown 
that the above outline is incomplete not to say inaccurate. Woepcke's 
translation of al-Khayyam's algebraic work revealed in particular that 
real progress in the theory of cubic equations had been accomplished 
long before the sixteenth century. Both authors, by their work on al-KarajI 
and al-KashI even went so far as to hint that the history of algebra 
could not be drawn independently of that of abstract algebraic calculus. 

Despite such studies, some historians still conceive the history of 
classical algebra according to the same outline. However, historians are 
not entirely responsible for this situation: it stems partly from the fact 
that al-Karaji, al-Khayyam, and especially al-KashI, might themselves 
appear difficult to integrate into real mathematical traditions. Until quite 
recently incomplete and partial information about Arabic mathematics 
has presented and still presents such works as individual compositions 
through lack of knowledge about the tradition from which they originate. 

Under these circumstances, it is understandable that the historian is 
naturally tempted to pose the controversial question of origins, which 
is automatically transformed into a question of originality. 

In this section we want to review briefly these mathematical traditions 
in order to maintain that classical algebra was renewed in the later tenth 
century, and that this renewal was not confined to a reactivation of 
received algebra, but was a real beginning, or strictly speaking, a series 
of beginnings. 

Two mathematical traditions to which algebra is connected may be 

34 
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recognized. The first is arithmetic - a "scientific art" - as Arab mathe­
maticians and bibliographers called it, number theory and the art of 
calculus - or logistics - both closely related. This development, the work 
of Arab arithmeticians themselves, was also the result of the transla­
tion of Diophantus' Arithmetica. To renew this discipline, al-KarajI and 
his successors were to make the most of both the development and knowl­
edge of algebra as practised since al-KhwarizmI. The second tradition 
is associated with the works of certain geometers, especially those con­
cerned with infinitesimal determinations and those seeking to advance 
algebra by geometry. Representative of this tradition, al-Khayyam and 
Sharaf aI-DIn al-rusI were led, as we shall see, to the algebraic study 
of curves: they laid down the foundations of classical algebraic geometry. 

To justify such claims, this brief account only aims to answer the 
following question: what did these beginnings consist of? What were 
their means and probable causes? 

If we want briefly to characterize the task for algebraists, at least those 
belonging to the first tradition, one may say that their aim was the 
"arithmetization of algebra" as constituted earlier by al-KhwiirizmI, and 
developed later by his successors such as Abu Kamil (850-930). As 
al-SamawJal was to write later, it consists of "operating on unknown 
quantities using arithmetical instruments as the arithmetician operates 
on known quantities". The task is clear and algebra acquires the meaning 
which will henceforth be its own: on the one hand, the systematic 
application of elementary arithmetical operations to algebraic expressions 
- algebraic unknowns - and, on the other, to consider algebraic 
expressions independently of what they may represent in order to apply 
the general operations applied to numbers. 

In al-KarajI's work (d. early 11th c.), carried on and perfected by 
his successors, the accomplishment of this project led, as we can see, 
one century later with al-SamawJal (d. 1174), to the extension of abstract 
algebraic calculus and the organisation of the algebraic exposition around 
the successive applications of different arithmetical operations. To be 
convinced we only need to skim through al-KarajI's al-Fakhrf or 
al-SamawJal's al-Biihir. The major result of their treatises on algebra 
was to provide greater knowledge about the algebraic structure of real 
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numbers. But as this result and other less important ones they achieved 
were often attributed to later mathematicians such as Chuquet, Stifel, 
etc., and as those results express precisely a change in algebraic ratio­
nality, let us review here what we set forth elsewhere and give a rapid 
description of these authors' approach and prove the affirmation just 
advanced. 

In al-Fakhrf, al-KarajI begins by studying the "successive powers 
of the unknown quantity". After stating verbally, i.e., not using 
symbols, that X" = X"-lx for m = 1, 2, ... , 9, he writes, "this is so on 
to infinity", and "when anyone of these powers is multiplied by a certain 
number of roots, the product is the order of the next power". It may 
therefore be said that al-KarajI defines X' = X'-lx for any positive integer 
n. 

AI-KarajI then tries to extend the notion of the algebraic power of a 
quantity, a power defined as it were by mathematical induction, to its 
inverse, and gives some important results such as (l/X'). (t/X") = l/X'+m. 
This generalization was to be refined and completed by his successors 
who, with the definitions of the zero power. XO = 1 for x "# 0, were 
finally able to state a rule equivalent to X'X" = X'+m for m, nElL. 

Only once the concept of algebraic power had been generalized could 
the application of arithmetical operations to algebraic expressions be 
attempted. The immediate consequence of this application was one of the 
first expositions of the algebra of polynomials. 

In al-Fakhrf, al-KarajI is not satisfied with examining addition, 
subtraction, multiplication, division and the extraction of roots of mono­
mials, but also that of polynomials. However, if he clearly states the 
general rules for +/-, x, for polynomials, he does not do so for the 
division and extraction of roots. He only considers the division of a 
polynomial by a monomial; and if he extracts square roots, he confines 
himself to that of a polynomial with positive rational coefficients. 

AI-KarajI's difficulties can moreover be explained by his own concept 
of the status of negative numbers. Although he had written in al-Fakhrf 
"that negative quantities must be counted as terms", customary practice 
apparently condemned the recognition of negative numbers to remain 
timid. Though he had no difficulty in accepting the subtraction of one 
positive number from another, he did not directly admit that x - (-y) = 
x + y. Under these circumstances, the difficulty of providing general rules 
for the division and extraction of the square root of polynomials with 
rational coefficients is understood. In the twelfth century however, 



THE BEGINNINGS OF ALGEBRA 

al-KarajI's successors were to state the general rules for signs: 

x ~ 0, y ~ 0 ~ xy ~ 0 

x ~ 0, y ~ 0 ~ xy ~ 0 

x ~ 0, y ~ 0 ~ x - y ~ 0 

x ~ 0, y ~ 0, Ixl ~ Iyl ~ x - y ~ 0 

x ~ 0, y ~ 0, Ixl ~ Iyl ~ x - y ~ 0 

x~O~O-x~O 

x~O~O-x~O 

or, as al-SamawJal writes. 
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(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

the product of a negative number - al-nllqi.r - by a positive number - al-Zll'id - is negative, 
and by a negative number is positive. If we subtract a negative number from a higher 
negative number, the remainder is their negative difference. The difference remains positive 
if we subtract a negative number from a lower negative number. If we subtract a negative 
number from a positive number, the remainder is their positive sum. If we subtract a 
positive number from an empty power (martaba khllliyya), the remainder is the same 
negative, and if we subtract a negative number from an empty power, the remainder is 
the same positive number. 

Equipped with these rules, al-KarajI's successors were able to accom­
plish the task and put forward a theory for dividing polynomials and 
extracting the square root from a polynomial with rational coefficients. 
The method al-SamawJal proposed is none other than an extension of 
Euclid's algorithm for the division of integers to expressions of the 
form 

n 
j= I atXk m, n E 71.+. 

k=-m 

To be precise, it does not quite concern ordinary division in the ring 
of polynomials K[x], K being a field, but in a ring A [x] = [Q(x) + Q(l/x)]. 
Moreover, al-SamawJal is not explicitly interested in the degree of the 
remainder. However, the results of the division are correct, because 
dividing j by 

n' 
g = I btXk m', n' E 71.+ 

k=-m' 



38 CHAPTER I 

is the same as dividing xafby xag, a = sup(m, m'); we are then led to 
the problem of division in K[x]. 

It should be noted that the division in the ring A[x] will be continued 
at least until the seventeenth century. Sometimes, moreover, instead of 
the elements of the ring A[x], al-SamawJal considers polynomials in 
the strict sense: in which case he defines the method for division with 
a remainder. In any case - further confirmation of the sufficiently 
elaborated concept of his approach - he indicates the elements of division 
by tables - elements of the ring A[x] or K[x] - by a sequence of positive 
or negative coefficients. 

A no less important part of this algebra is the approximation of integer 
fractions by the elements of A[x]. We have for example 

f(x) 20~ + 30x 10 5 20 10 40 20 80 40 
g(x) = 6x2 + 12 "" 3" + ~ - 3x2 - 7" + 3x4 + 7"" - 3x6 - 7 

where al-SamawJal obtains in a way a limited expansion of <1>(x) = 
f(x)lg(x). This approximation fits only for sufficiently large values of 
x, a condition which was not mentioned by the author. 

As they were able to extend ordinary division to polynomials, our 
algebraists follow an analogous approach in order to extract the square 
root of a polynomial. AI-KarajI had already proposed two methods to 
obtain the square root of a polynomial with positive rational coeffi­
cients. The two methods are based upon the development 

(x + y + ... + W)2 

= x2 + (2x + y)y + ... + (2x + 2y + ... + w)w. 

AI-KarajI's method had been generalized in the book al-Bahir where 
the author proceeds to obtain the square root of a polynomial with rational 
coefficients, or more precisely to find the root of a quadratic element 
of a ring A[x]. Hence to obtain the square root 

B = 25x6 - 30r + 9x4 - 40x3 + 84~ - 116x + 64 

48 100 96 64 --+---+-x x2 ~ X4 

by the table method, he writes 
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( 3 6 2 6)6 + lOx- x-8+~ ~ 

( 3 6 2 12 8)( 8) + lOx - x - 8 + - - - --
X x2 x2 

( 6 8)2 = 5x3 - 3x2 - 4 + ~ - x2 

AI-SamawJal gives this example to illustrate a general method (farfq 
Ciimm). 

With the extension of algebraic calculus to rational expressions, al­
KarajI and his predecessors continued to work towards the same goal 
and wants to show, as he writes: "how to operate on algebraic irrational 
quantities using multiplication, division, addition, subtraction and root 
extraction". AI-SamawJal poses the question in almost identical terms: 
"how can arithmetical instruments be used for irrational quantities (al­
maqiidfr al-~umm)?" 

Besides the mathematical results proper obtained by this extension, 
a study of special importance for the history of mathematics was under­
taken: it mainly concerns so to speak the algebraic interpretation of the 
theory contained in Book X of the Elements, hitherto considered by 
mathematicians in the wake of Pappus, even as important as Ibn al­
Haytham, as a work on geometry. With our algebraists these concepts 
refer henceforth to numerical and geometric magnitudes in general, and 
through the intermediary of algebra the theory takes its place in the 
field of number theory. 

Fortunately, without posing the problem of the existence of the field 
of real numbers, al-KarajI and his successors starts with definitions 
from Book X and immediately place themselves on a general plane. To 
provide himself with conditions for recognizing that expressions obtained 
by the combination of several radicals are irrational, al-KarajI proceeds 
like Euclid, with one exception however, for he extends the concepts 
of Book X to any algebraic quantity. 

In al-Badfc, he writes: 

Monomials are infinite: the first one is absolutely rational like five, the second is poten­
tially rational, like the root of ten, the third is defined in relation to its cube, like the 
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side of twenty, the fourth is the medial defined in relation to its square-square like the root 
of the root of ten, the fifth is the side of a quadrato-cube, then the side of the cubo­
cube and is divided in the same way into infinity. 

Binomials, like monomials, are divisible into infinity. Following this 
explanation, the mathematicians then give general rules for different 
operations, in particular: 

xllnyllm = (~yn)lImn 
xllnyllm = (~/yn)lImn 

xl/m ± yllm = [y[(x/y)lIm ± lr]l/m 

and, like al-SamawJal, reconsider numerous problems in Book X in order 
to provide algebraic solutions equivalent to those of Euclid, or new 
solutions. 

It was therefore with this tradition that polynomial algebra was 
constructed and a clearer knowledge of the algebraic structure of real 
numbers attained. Let us note, moreover, a new return to number theory, 
which furnished this algebraic discipline with the instruments it lacked. 
This return is oriented: from now on preference is given to algebraic 
proofs. This is precisely where a form of demonstration by finite 
mathematical induction appears. 

In a chapter of al-Fakhrf entitled "Useful chapters and theorems for 
solving problems by algebra", and another text by the author preserved 
by his successor al-SamawJal, al-KarajI reconsiders some of the problems 
of number theory, such as the sum of n natural prime integers, their 
squares and cubes, the binomial formula ... Though al-KarajI does 
not provide a real proof for some theorems, and though these theorems 
continue to be presented without proof by some arithmeticians, such as 
aI-BaghdadI (d. in 1037) in al-Takmila, for example, on the other hand, 
in the twelfth century they will be proved algebraically. They include 
the following properties: 

i k? = n(n + 1)(2n + 1) 
k=l 6 

(1) 

n (n) 2 l:12= l:k 
k=l k=l 

(2) 

both proved by a clumsy form of mathematical induction called "regres­
sion", as I have shown elsewhere. 
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(3) 

(ab)" = anbn, a and b commute and n E N (4) 

both proved by a certain form of mathematical induction still in use to 
a certain extent in the seventeenth century. 

But al-Karaji and his successors did not limit their investigations to 
the areas of algebra just examined. Their work covered many others: 
the theory of biquadratic equations, indeterminate analysis, systems of 
linear equations. In this last area, al-SamawJal solved a system of 210 
equations to 10 unknowns. 

Apart from all these results and new methods related to the arithme­
tization of algebra, let us note the emergence of a reflection on 
mathematics, a philosophy not of the philosopher but of the mathe­
matician. Even if this reflection or philosophy was thematic and 
unsystematic and even if, in comparison with the famous metaphysical 
systems of the Middle Ages, it may appear summary in structure and 
weak in argument, at least it had the advantage of being generated by 
mathematical activity itself. This probably explains why this reflection 
was not mentioned in the history of medieval thought, absorbed by 
traditional philosophy, "kaliim", and the traditionalist reaction to 
tendencies represented by Ibn Taymiyya or Ibn l:Iazm. Whatever the 
case may be, even if this reflection borrowed its themes from Pappus 
or eventually Proclus, the intervention of the new algebra is obvious; 
it provided the topics with new subject matter. 

Algebra is in fact the starting point for a reflection on the status of 
this discipline, its relation to geometry, its methods, the classification 
of problems and propositions. On this point it should be remembered 
that al-SamawJal, after explicitly identifying algebra and analysis, was 
subsequently to modify the position of this topic which will remain 
essential in mathematical philosophy for many centuries: analysis and 
synthesis. Moreover, he referred to a work entirely devoted to this 
problem which unfortunately has not been rediscovered. The impor­
tance of this identification in the seventeenth century is well known. 
Moreover, al-SamawJal, in the logical terminology of his age, but 
covering another range, provides a classification of mathematical 
propositions as important as it is difficult to interpret. He groups the 
propositions as follows: 
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I. necessary, 
II. possible, 
III. impossible. 

CHAPTER I 

I. Necessary propositions 

(a) First sub-class 
(a-I) "Propositions" or "problems where what is sought is to be found 

in all numbers", in other words, identities: 

example: if z = x + y then zlx + vy = (zlx)· (z/y). 

(a-2) "what is sought is found in an infinity of numbers", in other words, 
a proposition which has an infinite number of solutions without 
being an identity. 

example: x + 10 = a2 

x - 10 = b2 

(a-3) "whose solutions are numerous but finite [in number]", many in­
determinate problems are used as examples. 

(a-4) "which has one solution": 

example: xa = u2, xb = u ~ u = a/b. 

(b) Second sub-class 
The author classifies "necessary propositions" a second time 
according to the number conditions they must verify, i.e., one or 
more conditions. 

(b-l) only one condition: example, given two numbers a and b, deter­
mine x and y; x2 + l = a, xy = b; as a necessary condition we 
find a ~ 2b. 

(b-2) several conditions, example: a system of equations of n equations 
to m unknowns, m $; n. 

II. Possible propositions 

These are propositions for which the proof of either their truth or falsity 
is not known, as al-Samaw)al writes: 

For any proposition the algebraist or geometer considers, he will inevitably obtain proof 
of its existence (the existence of its solutions), and he will then call it necessary or 
(of its impossibility), he will call it impossible, or again he will find neither proof of 
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its existence, non-existence or impossibility, therefore he knows nothing about it and 
will then call it possible as he was unable to demonstrate either its existence or its 
non-existence. Since this (if we demonstrate existence and non-existence) would then 
refer to the negation of what is and to the impossibility of the necessary which is 
absurd. 

We now know why the author unfortunately gives no examples. He 
only recalls that possible problems should not be mistaken for indeter­
minate problems: the latter are in fact necessary. 

III. Impossible propositions 

These are propositions such that "if one could assume the existence (of 
their solution), this existence would lead to an absurdity". 

The least one can say is that this reflection on mathematical practice, 
in particular the new algebra, led the mathematician to deflect the 
Aristotelian notions of necessary, possible and impossible, toward those 
of calculability and semantic undecidability. They are moreover related 
to the notion of the solvability of an equation, and more generally, its 
calculability. 

When al-Samaw)al speaks about a necessary proposition A, he means 
proving A or non-A, while by a possible proposition A, he means that 
A is undecidable or that there is hardly any method either to prove or 
refute A. 

It is now clear how new mathematical practice stimulated philo­
sophical mathematical reflection. In our opinion, the historian of medieval 
Arabic philosophy would be wrong to ignore it. 

II 

We have just seen that the project of algebraist-arithmeticians was 
directly presented under the theme of extension: that of the domain of 
application of arithmetical operations. The results these mathematicians 
obtained are important not only for themselves, but also because they 
made a new beginning of algebra possible. This new beginning is no 
longer connected with arithmetic but related to geometry. At the outset 
the dominant theme is not so much extension as systematization: the orga­
nization of the examination of cubic equations and the elaboration of 
its theory. In order to understand the scope of his task, we must go 
back to the theory of cubic equations, and first of all, to al-Khayyam's 
own exposition (1048-1131). 
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In his algebra al-Khayyam writes: 

In this science (algebra) one encounters problems dependent on certain types of extremely 
difficult preliminary theorems, whose solution was unsuccessful for most of those who 
attempted it. As for the Ancients, no work from them dealing with the subject has come 
down to us; perhaps after having looked for solutions and having examined them, they 
were unable to fathom their difficulties; or perhaps their investigations did not require 
such an examination; or finally, their works on this subject, if they existed, have not 
been translated into our language. AI-Mahan! was one of the modern authors who 
conceived the idea of solving the auxiliary theorem used by Archimedes in the fourth 
proposition of the second book of his treatise on the sphere and cylinder algebraically. 
However, he was led to an equation involving cubes, squares and numbers which he 
failed to solve after giving it lengthy meditation. Therefore, this solution was declared 
impossible until the appearance of Ja'far al-Khazin who solved the equation with the 
help of conic sections. 

AI-Khayyam continues: 

After him (al-Khazin), all geometers would have needed a number of species of the 
aforesaid theorems, one solving one, the other another. But none of them wrote anything 
about the enumeration of its species, nor gave any exposition of each species, nor their 
demonstration, other than in relation to two species which I shall not fail to point out. 
I, on the contrary, have never ceased to genuinely hope to make known these species 
with precision as well as distinguishing for each species, the possible from the impossible, 
based on demonstrations. 

So, in this important text for the history of algebra, al-Khayyam affirms 
that: 

(1) Nothing came down from the Greeks concerning the theory 
of cubic equations. Though Archimedes states a geometrical problem 
capable of being reduced to a cubic equation, neither he nor his 
commentators were able to formulate this problem algebraically. This 
task devolved upon al-MahanI, and the solution must be attributed to 
al-Khazin. But neither they, nor their predecessors or contemporaries, 
attempted to elaborate a real theory of cubic equations. 

(2) We must distinguish not only between a geometrical problem 
capable of being reduced to a cubic equation and its algebraic transla­
tion, but also between the solution to either one of these problems and 
the elaboration of a theory of cubic equations. 

The problem of the status of this theory becomes clearer: does 
al-Khayyam's appreciation of his own contribution correspond to real 
history, at least as far as it is known? 

It is common knowledge that Greek mathematicians encountered 
problems concerning the duplication of the cube, the trisection of an 
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angle, both third-degree problems. Furthermore, Arab mathematicians 
knew and fully discussed the auxiliary propositions used by Archimedes, 
whose proof however is missing in the Treatise on the Sphere and 
Cylinder. It is also known that it can be reduced to a cubic equation of 
the form x3 - ex + a2b = 0 which was solved by Eutocius, and subse­
quently by Arab mathematicians such as Ibn al-Haytham. The means 
for achieving the solution is the intersection of the parabola x2 = ay 
and the hyperbola y(e - x) = abo At no time, however, before al-MahImI, 
did mathematicians think of reducing this or any other problem, such 
as the duplication of the cube (x3 = 2) to their algebraic expression. 

It is significant that the tendency to translate third-degree problems 
algebraically was reinforced in the tenth century for two reasons at 
least: the obvious progress of the theory of second-degree equations 
and the requirements of astronomy. The progress of the given theory 
provided algebraists with a model for algebraic solutions - using 
roots - to which they wanted to confo~m for higher degree equations, 
especially cubic equations. Astronomy directly posed numerous third­
degree problems. AI-MahanI (d. 874-884?) was himself an astronomer. 
But it was al-BIrunI (973-1048) in particular who, in order to deter­
mine the chord of certain angles for the construction of the sines table, 
explicitly formulated the following cubic equations 

x3 - 3x - 1 = 0 where x is the chord of an 80· angle. 
x3 - 3x + 1 = 0 where x is the chord of a 20· angle. 

Both equations were solved by trial and error. 
However, the algebraic translations of third-degree problems by 

al-MahanI, al-BIrunI and other mathematicians contemporary to the latter, 
such as Abu aI-IUd ibn al-Layth, posed a previously inconceivable 
problem: can these problems be reduced to cubic equations? Furthermore, 
is it possible to group all third-degree problems under the same heading 
if not attempt a solution just as elegant - using roots - as that of second­
degree equations, at least provide systematic solutions? Both questions 
would have been inconceivable before the development of the theory 
of biquadratic equations and abstract algebraic calculation, i.e. before 
the first renewal of algebra by al-KarajI. Neither Greek nor Arabic 
mathematicians, prior to this renewal, had posed this question. This 
problem and al-Khayyam's approach for providing a solution will 
constitute another beginning of algebra. 

Before undertaking their solution, al-Khayyam therefore starts by 
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classifying first, second and third-degree equations. This study has some­
times been assimilated with a geometrical theory of cubic equations. 
However, if by geometrical theory one means using geometrical figures 
to determine real positive roots of these equations, the assimilation is 
doubtless improper, since the geometrical figure only fulfilled an 
auxiliary function in al-Khayyam's algebra, and especially in that of 
his successor Sharaf aI-DIn al-TusI (fl. 1170). So, if solutions to these 
equations are obtained by means of the intersection of two conics, in both 
cases the intersection is still demonstrated algebraically, i.e. using curve 
equations. For instance, in the works of al-Khayyam and particularly 
those of al-TusI the following examples - among many without giving 
their proof in detail - may be found: 

- The method for solving x3 + ax = b implies solving both equations 
simultaneously: 

( x - t ~ r + l = (t ~ r (equation of the circle) 

and 

x2 = .Jay (equation of the parabola) 

where ra is double the parameter of the parabola and b/a is the diameter 
of the circle. 

- This gives the equation: x(x3 + ax - b) = O. By eliminating the trivial 
solution, we obtain the equation sought. 

- The method of solving x3 = ax + b implies solving two equations 
simultaneously 

x2 = -..lay (equation of the parabola) 

x ( ~ + x ) = l (equation of the equilateral hyperbola) 

where -..Ia is double the parameter of the hyperbola, and b/a the 
transversel diameter of the hyperbola. Whence x(x3 - ax - b) = O. If 
we eliminate the trivial solution, we obtain our equation. 

We could multiply such examples to show that a history of algebraic 
geometry, as yet unwritten, cannot succeed without examining the con­
tribution of the algebraic trend to this discipline. 

Just as important as this study is al-Tust's grasp and expression of 
the importance of the discriminant for the discussion on cubic equa-
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tions. Thus when considering the existence of positive roots of the 
equation x3 + a = bx (a, b ~ 0), he first notes that any positive solution 
to this equation must be inferior or equal to b1/2; for, if Xo is a root, one 
obtains: 

hence 

x~ + a = bxo 

x~ ~ bxo 

hence x~ ~ b 

on the other hand this root must satisfy the equality bx - x3 = a. 
AI-rUSt seeks the value whereby y = bx - x3 reaches its maximum, 

and finds x = (b/3)1/2 by cancelling the first derivative. Therefore this 
maximum is 

b(b/3)1I2 _ (b/3)3/2 = 2(b/3)3/2. 

There exists therefore a positive root if and only if 

The role of the discriminant D = b3/27 - a2/4 is thus established and 
elaborated algebraically for the study of the cubic equation. 

Already located, the role of the discriminant is not generalized 
however: the discriminant does not yet intervene in canonical solutions, 
i.e. by radicals. In order to solve this difficulty these same mathemati­
cians developed a method for solving numerical solutions to which the 
method named after Viete and notably after Ruffini-Horner, is usually 
related, as I shall show later on. 

It was known that al-Khayyam had found such a method for solving 
the equations X' = q. It was also known that before al-Khayyam, al-BIrOnt 
had dealt with the same problem. But only the title of al-BtrOnt's treatise 
has survived, and we only possess a summary of al-Khayyam's work, 
which would have helped to understand that this method was based on 
the development (a + b + ... k)", n E ~. Thanks to al-rust's Treatise 
on Equations, we now know of the existence of such a method, not 
only for equations of the type X' = q, but for general cases. This method, 
applied by aI-rust to all equations studied, may be briefly described as 
follows: 
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and put 

fix) = x" + alXn- 1 + ... + an_IX' 

The function is derivable several times. The interval to which the 
root belongs may be recognized, namely x E [lor, lOr+l ], X is therefore 
of the form Po lOr + PI lOr- 1 + ... + Pr and such that r = [mIn] where 
m is the decimal order of N, [mIn] is the integer part of mIn. 

- We determine XI = polor either by division or by seeking the highest 
integer of nth power contained in N. 

- We set NI = N - f(x l) 

and X = XI + X2, NI = g(x2) where g is a polynomial of X2 of degree 
n - 1. 

We obtain as the value approached by X2, X'2 defined by 

NI = nxrlx; + al(n - 1) xr2x; + ... + 
2an_2x lx; + an_Ix;. 

We recognize here the derivative of f at point XI and 

'2 NI 
X = f'(x l) . 

We then operate by successive iterations. 
Assume XI' x;, ... , X~_I determined where 

X = XI + x; + ... + X~_I + Xk k = 2, ... , n. 

A value approached by Xk:X~ is given by the formula 

where 

Nk = N - f(xI + x; + ... X~_I) 
Xk_1 = XI + x; + ... + X'k_I' 

(1) 

(2) 

Thus the value of X will be XI + x; + ... + x~ where the x~ are given 
by (2). 

However, although aI-rusT only applies this method to third or lower 
degree equations, the subject of his treatise, everything implies that he 
understood it in general terms. Moreover, al-Khayyam's summary had 
already set out the general nature of the problem. 
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A method for solving numerical equations, the study of curves by 
means of equations, the localisation of the role of the discriminant in 
the solution of cubic equations: these are the chapters of the renewed 
algebra. The ground covered since al-KhwarizmI's work is therefore 
measured not only in terms of the extension of the discipline, but by a 
change in the meaning of algebraic knowledge as well. If algebra asserts 
itself as the science of algebraic equations, and the latter not only relates 
to numbers and segments but also refers to plane curves, then algebra 
incorporates techniques existing in a tradition that actively participated 
in its renewal: the work of infinitesimalists. Among these techniques 
we may cite the use of affine transformations by an infinitesimalist like 
IbrahIm ibn Sinan. 

So this is how al-rusI, by means of the affine transformation 
x ~ x + a or x ~ a - x reduces the equations to be solved to other 
equations whose solution he knows. 

To solve these equations, al-rusI examines the maximum of alge­
braic expressions. He systematically takes the first derivative of these 
expressions - without naming it however - which he sets equal to zero, 
and proves that the root of the equation obtained, substituted in the 
algebraic expression, gives the maximum. 

Once he has found one of the roots of the cubic equation, to 
determine the other root, he occasionally examines a second-degree 
equation which is none other than the quotient of the division of the cubic 
equation by (x - r) where r is the root found. In other terms, he knows 
that the polynomial ax3 + bx2 + ex + d is divisible by (x - r), if r is a 
root of the equation ax3 + bx + ex + d = O. 

Lastly, after examining the equation, he tries to determine a higher and 
lower boundary for its real roots. 

If we insist on recalling these results, it is not only to present still 
unknown historical facts, but above all to show the theoretical and 
technical level of this algebra and the complexity of the historical 
problems it raises as soon as one ceases to record results in order merely 
to understand their history. The use of the derivative by these alge­
braists arose with the solution of algebraic and numerical equations. It 
is common knowledge, however, that the use of "the first derivative", 
related to the search for maxima, was not new. However, employed for 
one or other example, its usage remained sporadic and it was only with 
these algebraists and al-rusI in particular, that the notion of derivative 
would become an integral part of the solution of algebraic and numer-
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ical equations. The generalization of this usage will be obtained in 
fact by that of the theory of equations, then in the process of being 
elaborated on the one hand, and investigations by mathematicians whose 
activities extended to other fields, on the other. 

The works of Banu Musa, Ibn Qurra, his grandson IbrahIm ibn 
Sinan, al-QuhI, Ibn al-Haytham and many other non-algebraists, on 
infinitesimal determinations had indirectly prepared the attempts of our 
algebraists. By their refusal to interpret algebraic operations geometri­
cally, already observed in Banu Musa and reaffirmed by their successors, 
by their discovery of new arithmetical laws necessary for calculating 
surfaces and volumes, they provided those algebraists with techniques 
tested by research on maxima. But the basic enumeration and classifi­
cation of third-degree problems, necessary for elaborating the theory 
of equations with which algebra has already merged, the search for a 
method of solving cubic equations, had extended the field of applica­
tion of the infinitesimalists' techniques, and notably the search for the 
first derivative. Evidently thanks to infinitesimalists, enlarged by alge­
braists, the notion of the "derivative" was condemned to discretion as 
a result of the weakness of algebraic symbolism. In our opinion, this 
explains its systematic usage, though devoid of either name or title. 

III 

Barely half a century ago, Paul Tannery wrote that Arabic algebra "in 
no way supercedes the level attained by Diophantus". One is undoubt­
edly surprised to read such an appraisal especially after Woepcke's works. 
But it expresses more the ideological standpoint of the historian than con­
clusions to his own historical work. Moreover, if in the case of Tannery 
this ideology is obvious, it is often less so in other historians like Zeuthen, 
or more recently, Bourbaki. 

If I insist on recalling Tannery's assessment, it is less to right an 
injustice to the history of algebra than to point out a major difficulty 
for the sociological study of the history of science. For someone like 
Tannery, for example, this study could only be the answer to the question: 
what were the cultural conditions that prevented any progress in algebra, 
for it to remain in the state reached by the Ancients. Failing questions 
about the conditions for algebraic production, priority was given to its 
absence. However, the above summary clearly indicates that we are 
necessarily led to ask why and how algebra was renewed, not only in 
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relation to the Ancients - assuming moreover they possessed algebra -
but also in relation to the earliest Arab algebraists: al-KhwarizmI and 
AbU Kamil. 

The way in which questions are asked, determined by the historian's 
ideology, inevitably leads to contradictory answers. Evidently for this 
question, ideology is found again in the formulation of the answer. Let 
us suppose for a moment that the second question is basically the right 
one, then nothing precludes looking for the answer in another direc­
tions. For instance, starting from the incomparable development of 
algebra in relation to Hellenistic and medieval Latin mathematics, Roger 
Arnaldez and the late Louis Massignon thought that Arabic as a Semitic 
language "resulted in inflecting the knowledge it expressed towards 
thinking which was an analytical, atomistic, occasionalist and apoph­
tegmatic". A recent study of "the semantic involution of concept" 
explains how Semitic languages tend towards abbreviated and abstract 
formulation, "algebrisant", in contrast to "Aryan geometrisation". 
According to these authors, linguistic structure is therefore responsible 
for the development of "a science of algebraic constructions". It is 
therefore clear that even if the right question were asked, nothing safe­
guards the answer from another ideology which, in the preceding 
example, goes back to Ernest Renan. 

Questions about the historical reasons for algebraic production must 
firstly imply therefore a rejection of ideology on more than one level: 
the question itself and elements for an answer. But a necessary, clearly 
inadequate condition for ideological neutrality would be in the first place 
knowledge about the state of the discipline examined. For the historian 
of Arabic science this knowledge remains fragmentary and imperfect. 
This simple observation shows that we are far from achieving the aim 
of this discussion and it is premature at the present time to pose the 
question of the social conditions of scientific production. 

Two other details confirm our admittedly negative attitude. In fact, 
concerning algebra examined here, an algebraic problem can only be 
posed in intrinsic terms, and the autonomy of algebra has already been 
sought and confirmed for the production of theorems and the invention 
of propositions. The role of philosophies and ideologies is relegated 
to a second, far off stage. This epistemological enclosure is character­
istic of all advanced disciplines and before being set, the problems of 
conditions for production must both mediated and fragmented. Its 
mediation requires taking all disciplines into account - in this case 
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arithmetic, trigonometry, observational astronomy ... - to which the 
discipline is linked. Its fragmentation requires knowing the respective 
weight of cultural factors that may influence scientific production in 
one way or another. For lack of details, we are inevitably victims of 
either one of these illusions - transcendental or empirical. The former 
mistakes the means of posing the problem for the problem itself and, 
consequently the components of Durkheimian, Weberian or even 
Marxist doctrines for the explanation itself. Too often these are general 
considerations that do not define the facts one is supposed to explain. 
Empirical illusion gives the impression that the enumeration of cultural 
components is a satisfactory answer. However, both illusions continue 
to dominate explanations of scientific production. 

Moreover, for the case which interests us here, they can only be 
reinforced due to the scarcity of scientific studies on the Muslim empire 
and its economic system or systems. 

But are we justified in taking refuge in this negative position by 
refusing to examine problems raised by this discussion? A rigorous 
attitude would incline us towards such an abstention, undoubtedly 
justified, but leaving room for the vaguest of considerations. I think it 
is important to take a risk here by exploiting the only possibility that 
remains: to formulate plausible conjectures that do not pretend to 
substitute a real answer, and to indicate one or more hypotheses for 
research. We must therefore commit ourselves to mediating the question 
of the social determination of new algebra, and instead of taking it as 
a starting-point, return to the disciplines that were most active at its birth. 

Two disciplines among all others have contributed to the constitu­
tion of the new algebra: arithmetic and the various branches of 
observational astronomy. The former intervened in the transformation 
of the ancient algebra, as we have seen, by transposing its operations 
to [new] algebra, once these operations were identified and system­
atized and also the generalization of the algebraic expression of some 
of its techniques such as Euclid's algorithm for the division and extrac­
tion of the square root. Astronomy, by its own requirements, compelled 
the algebraist to re-examine the problem of numerical equations and 
study curves by means of equations. 

The question of the social determination of the new algebra becomes 
clearer and is posed in the first place in connection with various branches 
of astronomy and arithmetic. Only the question of arithmetic concerns 
us here. 
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If we return to the work of arithmeticians before the rise of this 
algebra, mostly algebraists themselves, a twofold preoccupation is 
frequently observed: to develop their discipline and provide it with a 
"domain of application". By "domain of application" we mean an area 
of examples, not necessarily related, where mathematical instruments are 
applied in order to rationalize empirical practises, and therefore to solve 
practical problems theoretically. We may therefore appreciate the scope 
of the mathematical instrument, regardless of the significance of the 
example chosen or the effectiveness of the solution reached. 

Theoretical development and the application of arithmetic to 
rationalizing empirical practice are the two tasks often assigned by 
mathematicians to their arithmetical treatises. They make it possible to 
identify some directions for research. 

The composition and extent of the Abbasid empire brought together 
and confronted several arithmetics. Two of them, digital and Indian 
arithmetic, posed both theoretical and practical problems for mathe­
maticians. Solicited in particular by state administrations, mathematicians 
attempted to develop both of them with other mathematical knowledge, 
justify their rules, compare them more or less implicitly, to base and 
facilitate their usage, and provide the civil servant with a sort of vade­
mecum. Sometimes, moreover, the same mathematician composed a 
treatise for each branch of arithmetic: al-KarajI, for example. 

That arithmetic treatises were at least partially a response to admin­
istrative needs, has been stated by the authors themselves. In On the 
needs for scientific arithmetical science for "kuttiib" (writers, secretaries, 
civil servants in administrative offices), "Cummiil" (prefects, tax 
collectors) and others, al-BuzjanI presents his treatise as a work 

comprising all that an experienced or novice, subordinate or chief in arithmetic needs to 
know, the art of civil servants (~iniiCat al-kitliba), the employment of land taxes and all 
kinds of business needed in dfwlins, proportions, multiplication, division, measurements, 
land taxes, distribution, exchange and all other practices used by various categories of men 
for doing business and which are useful to them in their daily life. 

The same preoccupation is evident in al-KarajI's treatise, al-Kiifi. 
The same concern is found in Indian treatises on arithmetic but more 

simply expressed. Thus Ibn Labban (c. 1000) wrote in conclusion to 
his work: "these foundations are sufficient for all astronomical compu­
tations and current practises between men." His pupil, al-Nasawi 
(c. 1030), who had started by composing a treatise on arithmetic in 
Persian for the Rayy administration, later provided an Arabic version 
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"so that men may use it for their various affairs and astronomers in 
their art". 

We could multiply examples borrowed from that generation of 
mathematicians, i.e. at the end of the ninth century. In this period of 
the Abbasid empire, we witness: 

(1) the consolidation and development of the administrative institu­
tions of the empire; 

(2) the multiplication of small-scale replicas of these institutions in 
the provinces following the declining power of the caliphs; 

(3) the rise of a social class, "kuttiib", or civil servants, related 
to the increase in administrations (dfwiins) and their small-scale 
replicas. 

The autonomous existence of this social class, and its sociological 
impact had already astonished contemporary historians: al-TabarI, 
al-~mI, al-MasciidI and especially al-JahshayarI, in his work, AI-WuzariP 
wa al-kutfiib, gives a detailed description of them. Moreover, it is known 
that the arabisation of the dfwiins had begun fairly early, between 700 
and 705, depending on the provinces, as al-JahshayarI and al-KindI the 
historian recall. 

At the end of the Ummayad empire, one of these civil servants, 
Hariin ibn cAbd al-J::IamId had already drawn the ideal portrait of his 
colleagues. According to a text preserved by al-Jahshayan and related by 
Ibn Khaldiin, we know he is an educated man with some knowledge 
of arithmetic. Besides moral and social qualities, he must have some 
knowledge of Arabic, history, arithmetic and religious science neces­
sary for his work. This is what Adam Metz meant when he wrote that 
the civil servant "is the representative of literary culture and only deals 
with religious science according to the requirements of his work and 
intellectual level". He added: "It is this class of civil servants that most 
distinguishes the Muslim state from Europe in the early Middle Ages". 
Consequently, to educate of its members, this social class encouraged the 
production of treatises not only on arithmetic, but also on economics 
and geography, like Qudama ibn Jacfar's famous work on land tax, and 
dictionaries of the philosophical, economic, and scientific terminology 
of the age, such as al-KhwarizmI's Maliit!1J al-culUm. To characterize this 
class, we could not improve on what Claude Cahen wrote: 

Bureaucracy, i.e. a regime dominated by an army of specialized scribes who had become 
a sort of caste that survived the passing of caliphs and viziers; red tape, i.e. a regime where 
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everything that could be recorded was inscribed in detail, according to technical and 
stylistic rules known only to them, to ensure a monopoly over the professions. 

Financial, military, intelligence, correspondence (chancellery) and 
many other dfwans, all shared a need for financial accountancy and 
reliable, accessible treatises on arithmetic for their daily activities. 

However, what we agreed to describe as a "domain of application" for 
arithmetic is exactly constituted by the problems posed to dfwan civil 
servants. So chapters 4 and 5 of AbU al-WafiP al-BOzjanI are concerned 
with financial problems as such, while chapter 6 deals with matters 
such as the payment of soldiers, the granting or withholding of permits 
for commercial ships sailing on the river, merchants on the highways, the 
dispatch of correspondence and couriers, and all other business conducted 
by dfwans. 

The confrontation of both arithmetics makes it clear from the outset 
that easy, rapid handling have become preferential criteria. It was in 
fact to emphasize the importance of Indian arithmetic that al-UqlldisI 
advanced its practical value and wrote: 

Most arithmeticians are obliged to use it in their work: since it is easy and immediate, 
requires little memorisation, provides quick answers, demands little thought ... Therefore, 
we say it is a science and practice that requires a tool, such as a writer, an artisan, a 
knight need to conduct their affairs; since if the artisan has difficulty in finding what he 
needs for his trade, he will never succeed; to grasp it there is no difficulty, impossi­
bility or preparation. 

It was therefore apparently to fulfill two new requirements, and in 
conformity with new standards, that the mathematician went back to 
digital or Indian arithmetic, whose rules he set out to justify, and then 
to organise their exposition. This return, an implicit confrontation of 
arithmetics, brought out much more clearly than before the general and 
abstract nature of the concept of operation. Viewed in this way and 
partially systematized, operations would from now on be means of 
organizing arithmetic statements. The existence of several types of 
arithmetic resulted in relativizing systems of numeration in order to show 
that what is essential is the choice of a base and the operations to be 
applied. AI-UqlIdisI had not hesitated to declare earlier: "It is possible 
to replace the nine figures (/Juru!) by other figures, either abjad, Roman 
or Arabic figures", an idea so widespread that al-KhwarizmI the Writer 
could say in his cited work: "We shall write using these numbers (abjad) 
like Indian arithmeticians, which means using 9 figures from alif 
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to fa J , and this sign (0) will be set in the empty squares in place of 
the zero in Indian computation". 

In other words, once a base has been chosen, the figure used in 
Indian arithmetic can be replaced by any other numeration system. But 
given these conditions, operations no longer correspond to a particular 
notation of a system of numeration. AI-KarajI drew a sufficiently general 
distinction between two classes of data: rational and irrational quantities, 
the operations of multiplication, division, raising to powers, addition and 
subtraction. 

It was precisely these operations that made it possible to systemati­
cally organize the exposition of the beginning of Indian arithmetic, and 
if they fulfilled a similar role for digital arithmetic, it was just as 
systematic though less complete. For instance, their exposition by 
al-UqlIdisI, Ibn LabMn, and al-NasawI is organized by the operations 
+/-, x/+ and the extraction of roots, while digital arithmetic is essentially 
organized by x/+, and only sometimes the extraction of roots, the 
composition law +/- being known. 

Conceived in a more general and abstract way than in the past, with 
a direction for organization of treatises, the operations were available 
for other applications, and this is how they appeared to those who 
intended to extend algebraic calculation. They were also able to gener­
alize results obtained by applying these operations to arithmetical 
operations to algebra. It was up to al-KarajI and his successors, al­
ShahrazurI and al-SamawJal, accomplish this task. 

DISCUSSION 

R. Rashed: One of the topics of this symposium is the problem of the 
relation between science and society in the history of scientific thought. 
As I am particularly interested in algebra, I must first of all describe 
the state of this discipline as accurately as possible. Questions that will 
be asked about the relation between science and society are themselves 
determined by the knowledge the historian has of this science. The 
difficulty is even greater when it concerns mathematics in general and 
algebra in particular. I would like to say that algebra is both a privi­
leged and a constraining field. Privileged in the sense that if a relation 
between science and society exists, it may be determined by what I call 
an "epistemological enclosure" for the production of mathematics. By 
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"epistemological enclosure", I simply mean that on a certain level, a 
certain stage of scientific development, an algebraic theorem is produced, 
and only produced by a pre-existing series of other theorems; there are 
no external reasons. This enclosure makes it possible to bring out the 
relation science-society, and make it more apparent than in other 
disciplines which lack the same conceptual command. But this episte­
mological enclosure is justifiably quite constraining in the sense that if 
there exists a relation between science and society, or algebra and society, 
the number of intermediary disciplines must be multiplied in order to 
see on what level and how this relation occurs. I am going to show that 
it is quite impossible to examine the relation between algebra and society 
(or social conditions) without referring to arithmetic and astronomy, 
i.e. without enumerating the various branches of arithmetic and 
astronomy. 
1. Gagne: You just said that the epistemological enclosure made the 
relation you study apparent. That is what I would like to clarify. You said 
it makes the relation more apparent. I wonder if, on the contrary, it doesn't 
make it less apparent. 
R. Rashed: I prefer to use the words "privileged and constraining". For 
example, if algebra developed from the solution of practical problems, 
on this elementary level we can see immediately how practical reasons 
and problems intervene. For example, if algebra developed from the 
determining or sharing of inheritance, it must be integrated into an 
economic system which may be determined. One can see the relation 
directly. Inheritance distribution may use algebra, but algebra as 
it develops - and this is what I am trying to prove - does not need 
inheritance, which amounts to saying that theorems are not produced 
or invented for extrinsic reasons. 
S. Victor: Once algebra becomes a science, it continues as an indepen­
dent science, there I entirely agree with you. When these reasons are 
invoked to say there was never any relation between the inheritance 
distribution and the beginning of algebra, I do not agree, because a 
relation did exist at the beginning of algebra. 
R. Rashed: That was perhaps valid for algebra in the early beginning with 
al-Khwarizmi, Abu Kamil etc., but no longer so in the eleventh and 
twelfth centuries. 
G. Beaujouan: It is a problem of getting under way; once a science has 
taken off, it continues to exist with its internal logic and is much less 
dependent on external stimulus than at the beginning. 



58 CHAPTER I 

R. Rashed: I didn't say there was an epistemological enclosure with 
al-KhwarizmI or AbU Kamil. I was only talking about the eleventh and 
twelfth centuries. 
J. Murdoch: But you have only excluded one kind of social relation, if 
you want to call it that. That is, you have excluded the influence of 
something exterior, or social on the invention, discovery, or production 
of a given theorem. But this ignores, it seems to me, a much more 
frequent kind of thing and that is, once a theorem is discovered, once 
it is established, what are the social factors acting upon its utilization, 
its application? 
R. Rashed: I agree with the problem of applications. But if we go back 
to the constitution of algebra itself, we can see how social factors inter­
vened, that is not in algebra as such, but by means of arithmetic, 
astronomy and disciplines which are not algebra. 
J. Murdoch: But will we get a "third man" argument here? You say 
that for the application of algebra to external things you have to proceed 
by the intermediary of arithmetic. Well, let's take arithmetic. For the 
application of arithmetic - forget algebra for the moment - do you need 
another intermediary to apply arithmetic, and if so, why, and if not, 
why not? 
R. Rashed: That depends on the state of arithmetic. Which is why I 
said we have to know what ,sort of arithmetic we mean. For the moment, 
I am simply trying to point out the difficulties concerning algebra. What 
is meant by "privileged" and "constraining" conditions for these disci­
plines that enables us to pose the problem of the relations between science 
and society? "Privileged" in the sense that where there is a relation, it 
will be more determined, more apparent than for example the relation 
between science and society for metaphysics, or physics, in the Middle 
Ages, where a body of ideologies may intervene. This is not the case 
for algebra. We have a discipline that is already neutral in relation to 
those ideologies. Therefore we can study the relation between science 
and society directly. But, on the other hand, we are bound by the level 
of this discipline; by the very fact that it is already scientific, our hands 
are rather tied for considering the intervention of social factors in its 
formation. 
J. Murdoch: Yet you would claim that our hands are less tied when it 
comes to the consideration of the impact of social factors upon arith­
metic. 
E. Sylla: Isn't it just an historical fact that when you look in algebraic 
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works you don't see social connections, but when you look in arith­
metic works you do, they tell you about applications? 
R. Rashed: That is an historical fact, but there is something more than 
this fact. You have at least three systems of arithmetic - Indian, digital, 
and sexagesimal - and the question arises why, at a certain moment, 
did they try to unify arithmetic. What does it mean, unify arithmetic? 
And how did they do it? And what compelled them to do it? The 
conjecture I made in answer to these questions is very simple: it is the 
existence of a new social class, the class of scribes as a social organi­
zation. They requested this unified kind of arithmetic; they needed 
this kind of unification for their calculations. The development of 
arithmetic was produced by this kind of social need as can be proved 
by the books written by mathematicians like Abu al-WanP, al-KarajI, 
al-ShahrazurI, al-SamawJal, etc., especially for this new class, and by the 
kind of problems dealt with in these books. 
A. Sabra: But you have to show this in a much more concrete way. 
That is to say, you have to show what kind of problems these people, 
these scribes, were working on and how and why they required this 
kind of unified arithmetic. Furthermore, I wonder whether the social 
factors proposed enable us to go beyond considerations that are at best 
vague. 
1. Murdoch: Yes, but Roshdi has made it less vague in the sense that 
he has said that a socially catalyzed cause has conditioned develop­
ments in arithmetic which were in tum only a necessary condition for the 
development of algebra and that the development of algebra came out 
of this existing necessary condition in a totally internal way. 
A. Sabra: Yes, all right, but what we have been discussing is algebra, 
not arithmetic. And what has come out of the discussion of algebra, 
and out of what Roshdi himself is saying, is that in the period he has 
been working on the development of algebra is an internal one. That 
makes sense. But one wonders about what happened in the period 
between al-KhwarizmI and Abu Kami!. You don't talk about that. One 
doesn't know much about it and this makes treating it a bit difficult. 
R. Rashed: Yes, it is difficult, just as all questions about origins are 
difficult. You cannot answer them. I even think it mistaken to ask them 
now. One gets at best anecdotal history. 
A. Sabra: I don't think that looking for origins necessarily leads to a 
history which is just discoveries and anecdotes. In fact, I don't see how 
an historian of mathematics can get away from this question of origins. 
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I don't think you can ignore it. After all, it gives you a research program. 
One might see, for example, a certain similarity between a theorem that 
is found in one of those authors like al-KashI and something in China. 
Now of course it would be wrong to go on just from there and say: 
"See, similar, therefore this comes from that." No, this is not very 
interesting. But if this leads you to ask whether it is possible that such 
a transmission could have taken place, then it becomes fruitful. What you 
will then do with it as an historian is still a problem; I am not saying 
that history ends there. 
R. Rashed: We must nevertheless foresee the danger of the question 
of origins, if it can be solved, being transformed into a question of 
originality. 
G. Beaujouan: If it's about originality, we fall back on the issue of 
predecessors. 
A. Sabra: That is why I was trying to protect myself by saying that 
what you do with the question of origins afterwards is something else. 
That is to say, the cluster of questions that are somehow involved 
in this concept of originality, which is not a clear concept, still remain. 
Take the work of someone like E. S. Kennedy. He is interested in 
questions of transmission. Yet Kennedy somewhere says in one of his 
articles that once you have a theorem, you are faced with something 
that has an intrinsic value. I was very much moved by that statement 
because it is true. The important thing for the historian is the intrinsic 
value that somehow resides in a new theorem, a new discovery. But I 
don't think that this releases the historian from further research. Because 
by bringing in questions of origins, the problem of originality and 
intrinsic value becomes more complicated. It also becomes more inter­
esting and historically richer. Once you throw this away, it seems to 
me that eventually you will end up by doing, not history, but some­
thing like the philosophy of science. Thus, for the time being, I am saying 
that the questions of origins and originality still remain. 
R. Rashed: But even the problem of origins includes at least two 
questions: firstly, a question of attitude, i.e. to pose the problem of origins 
without transforming it into one of originality. But there is also another 
issue, which is not to confuse or mistake historical genesis with the 
logical structure of the theory under consideration. Both issues are often 
mistaken for one another. And that is what makes it possible to find 
algebra in Euclid, information theory in Aristotle, and so on. So it's a 
question of decision and strategy. But that also depends on what history 



THE BEGINNINGS OF ALGEBRA 61 

of science we mean and our knowledge of this history. For example, in 
the history of Arabic science, we don't even know who invented what. 
When Luckey and others after him wrote about al-KashT for example, 
they didn't know that al-Samaw}al and al-TusT possessed a large number 
of inventions attributed to al-KashL Luckey and his successors interested 
in the question of origins went back to China to find them. That was 
as much a logical as an historical error. That's what the question of origins 
leads to, at least at the present time. 
A. Sabra: What you are doing now is working in the research program 
of the historian filling in the gaps. 
R. Rashed: I only said what the necessary conditions for useful work 
on origins are. These conditions may involve refusing easy solutions 
like continuity. It should be remembered that historical continuity is 
not necessarily logical continuity. To put a work in its historical context 
implies first of all analyzing it, grasping its logical structure. For example, 
to study al-KarajI's text as an algebraist, without understanding his 
essential contribution, and immediately to undertake work on origins, 
as is often the case, is to lose the essential, to lose al-KarajI's contri­
bution. The search for the origins of his algebra, necessarily implies going 
back to al-KhwarizmT, AbU Kamil. Even assuming we know all of 
al-KarajI's predecessors, we won't be able to understand if we stop his 
essential task there, i.e. a new departure for algebra by what I called 
the arithmetization of algebra. Perhaps we will succeed in finding origins 
when we separate historical genesis and logical structure; but then the 
question of origins will have been completely transformed. 
A. Sabra: What you are saying is really not against this program; you 
are just saying that if you have to do it you should, of course, do it 
well. 
1. Murdoch: One might say that your unhappiness with the history of 
mathematics has to do with the way it is usually done. That is, if one 
asks what the entities are between which we are trying to fill the 
gaps, in most histories of mathematics - Cantor, Tropfke, for example 
- what they're doing is concentrating on results or on theorems or on 
particular kinds of examples. That is what is traced. It is extremely 
difficult to find someone tracing within algebra, let us say, the use of 
false position; not just when it occurs, but why? Or who used the theory 
of proportion? Where? Why? That is, tracing methods, conceptions, apart 
from results. Now that kind of thiRg, it seems to me, is incredibly more 
productive. 



4. MATHEMATICAL INDUCTION: 

AL-KARAJI AND AL-SAMAWJAL 

Since 1909, the history of mathematical induction has, on several 
occasions, been revised and rewritten. Perhaps, never to happen again 
in the history of science, it all began with a very brief paper; in three 
pages of the Bulletin of the American Mathematical Society, Georges 
Vacca! shattered an assertion almost unanimously accepted by historians: 
mathematical induction is the achievement of the seventeenth century 
and priority must be attributed to Pascal. But Maurolico, not Pascal, 
was the originator, "the first discoverer of the principle of mathe­
matical induction". The first formulation of the principle of mathemat­
ical induction is not to be found in the TraUe du triangle arithmetique 
either, nor independently, as has been said, in the works of Jacques 
Bernoulli (Cajori [1918], pp. 197ff.), but was expressed for the first 
time in the work of a sixteenth-century mathematician Maurolico. 
Fascinated by Vacca's discovery, some historians and not the least impor­
tant, i.e. Cantor, Gunther, and Bourbaki, integrated the newcomer, 
Maurolico, without further examination. 

Apart from reservations that may be expressed concerning the intrinsic 
value of Vacca's article, it must at least be recognized that indirectly 
he challenged historians' certainty, and posed afresh both the problem 
of the history of the principle of mathematical induction and how to write 
it. 

The most scholarly answer to this problem occurred forty-four years 
later in a criticism of Vacca. After detailed examination of Maurolico's 
work, Hans Freudenthal (1953) showed that there were at most three 
places where a clumsy form of mathematical induction could be observed, 
but Pascal was the first to give an abstract formulation of the principle 
of this induction. Though concerned with rehabilitating Pascal, 
Freudenthal nevertheless qualified his thesis: Maurolico had clearly 
recognized an archaic form of mathematical induction and Pascal, like 
so any others, had started from this form before going further to grasp 
the principle of mathematical induction in its abstract form. 

62 
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Since Freudenthal's study, two other historians at least, who moreover 
referred to it, have taken up the problem afresh. Kokiti Hara (1962), a 
"Pascali an", disregarded Freudenthal's reservations, and made Pascal the 
absolute beginner, so to speak, in the history of mathematical induc­
tion. The other, Nahum L. Rabinovitch (1970) went explicitly back to 
Levi ben Gerson to show that he was "the earliest writer known to have 
used induction systematically in all generality and to have recognized 
it as a distinct mathematical procedure". 

These investigations confirm that the problem posed in 1909 did 
indeed shift, only to be posed anew in identical terms. 

We shall present unpublished documents that will complicate matters 
even further, and show that more elaborate attempts, not only before 
Maurolico but before Levi ben Gerson as well, are to be found in two 
mathematicians: one whose work is already known to historians -
al-KarajI,2 and the other whose importance has only recently come to 
light - al-SamawJa1. 3 But perhaps its very complexity makes the problem 
of the history of mathematical induction capable of receiving a precise 
answer. Here we may in fact ask a question forgotten with respect to 
Maurolico and Levi ben Gerson: why did al-KarajI and al-SamawJal 
resort to new methods of proof? Only in so far as we can answer this 
question can we also hope to set forth the absence or presence of 
mathematical induction. Without this question, the history of the problem 
is identical to that of the rare text. After all, a historian as informed 
and experienced as Jean Itard4 had already discovered mathematical 
induction in Euclid, while Freudenthal, no less informed and experienced, 
had traced these various attempts back to the prehistory of the concept. 
But as the history of science is not empirical archaeology, it must learn 
not only to identify a text, but also the language and style in which it 
is expressed. As a first step, let us start by establishing the text. 

II 

The first formulation of the binomial and the table of binomial coeffi­
cients, to our knowledge, is to be found in a text by al-KarajI, cited by 
al-SamawJal in al-Bahir. We note the existence of a type of proof we 
shall call R}> whose successive stages we shall establish. 

The author starts out by proving some propositions concerning the 
commutativity and associativity of multiplication and the distributivity 
of multiplication in relation to addition. 
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PROPOSITION 1. Given any four numbers. the product of the multiplication of the first 
and the second by the multiplication of the third and the fourth. is equal to the multi­
plication of the first by the third and the multiplication of the second by the fourth. s 

~ [(ab)(cd) = (ac)(bd)]. 

Proof Given four numbers a, b, c, d. Multiply a by b to obtain e, a by c to obtain 
f, c by d to obtain g and b by d to obtain h. I say that the product eg is equal to fh. In 
fact, if we multiply band c by a, we have two numbers e and f, and consequently, the 
ratio of e to f is the same as b to c. However, b to c is in the same ratio as h to g. 
Therefore e to f is in the same ratio as h to g. Consequently the product of e by g is 
equal to the product offby h. Q.E.D.6 

LEMMA. Given three numbers a, b, c, we have (ab)c = (ac)b. 

The author recalls moreover the distributivity of multiplication in relation 
to addition. 

PROPOSITION 2. The product of the number AB (AB = AC + CB), as Euclid showed. 
wrote al-Samaw'al (in Book 2 Figure 1) by any number is equal to the product of AC 
by this nU1lJber. plus the product of CB by this same number.7 

~ [(a + b)'A = (a) 'A + (b)'A]. 

With the aid of these and other propositions relating to addition and 
multiplication, al-SamawJal proposes to prove the two following expres­
sions: 

n 
(a + bt = I, C:an-mbm, n E N (1) 

m=O 

n E N (2) 

To prove the first identity, al-SamawJal assumes the reader to be familiar 
with the development (a + b)2 given in al-Karaji's al-Badfc, and cited 
by the author in an earlier chapter. He proposes to prove the identity 
for n = 3. His proof consists of the following stages: 

[1]. 
1.1. (a + b)2(a + b) = (a2 + 2ab + b2)(a + b) = (a + b)3 

by the development of (a + b)2 

1.2. (a + b)3 = a2(a + b) + (2ab)(a + b) + b2(a + b) 
by Proposition 2 
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1.3. = a3 + a2b + 2a2b + 2ab2 + b2a + b3 

by Propositions 1 and 2 

by grouping the terms. 

[2]. He proves the identity in the same way for n = 4 using the 
development (a + b)3. Here follows a full translation of the proof. 

Any number divided into two parts, its square-square is equal to the square-square of 
each part, four times the product of each by the cube of the other, six times the product 
of the squares of each part. 

EXAMPLE. Let the number AB be divided into two parts, AC and CB. I say that the 
square-square of AB is equal to the sum of the square-square of AC, the square-square 
of CB, four times the product of AC by the cube of CB, four times the product of CB 
by the cube of AC, and six times the product of the square of AC by that of CB. 

Proof. The square-square of AB is the product of AB by its cube. But we showed in 
the preceding figures that the cube of AB is equal to the sum of the cube of AC, of the 
cube of CB. of three times the product of AC by the square of CB, and three times the 
product of CB by the s~e of AC. 

But the £!:.oduct of AB by any ~mber is equal to the sum of the product of this 
number by AC and its product by CB. 

Therefore we~ave, equal to the square-s9!!.,are of AB, the sum of the product of the 
cube of AC by AC - the square-square of AC - and by CB; the product of the cube 
of CB by CB - the square-square of CB - and by AC; three times the product of the square 
of CB by AC multiplied by AC and by CB, and three times the product of the square 
of AC by CB multiplied ~ AC and CB. But three times the product of the square 
of AC by CB multiplied by AC is equal to three times the product of the cube of AC by CB. 
Similarly, three times the product of the squa~of AC by CB multi~d by CB is equal 
to three times the product of the s9!!.,are o!...§C by the squa~ of CB. Similarly, three 
times the product of the square of CB by AC multiplied by AC is equal to three times 
the product of the square of AC by the square of CB. Similarly, three times the product 
of the square of CB by AC multiplied by CB, is equal to three times the product of the 
cube of CB by AC. Therefore the square-square of AB is equal to the square-square of 
A C, the square~uare of CB, four times the product of A C by the cube of CB; four times 

the product of CB by the cube of AC and six times the product of the square of AC by 
the square of CB. Q.E.D.8 

[3]. For n = 5, he gives no proof but writes, 

he who has understood what we have just said, can prove that for any number divided 
into two parts, its quadrato-cube is equal to the sum of the quadrato-cube of each of its 
parts, five times the product of each of its parts by the square-square of the other and 
ten times the product of the square of each of them by the cube of the other. And so on 
in ascending order.9 

[4]. At this point, he gives the table of binomial coefficients from 
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al-KarajI's worklO as a means of finding "the number in the develop­
ment of squares and cubes up to the limit one wants". The table of 
coefficients is given according to the following model: 

n= n=2 n-l=l1 n = 12 
1 1 1 1 
1 2 C~_l C' n 

1 C~_l C2 
n 

Cm 
n 

1 Cn- 1 
n 

1 

on the other hand, the calculation of C::' assumes the binomial co­
efficient of index (n - 1) known. In fact, the formation rule given by 
al-KarajI is equivalent to 

C::' = C::'-ll + C~_l' 

This method is, moreover, stated for integer n as large as desired. ll 
To use al-SamawJal's own words: 

Let us now recall a principle for knowing the necessary number of multiplications of these 
degrees by each other, for any number divided into two parts. Al-KarajI said that in 
order to succeed, we must place 'one' on a table and 'one' below the fIrst 'one', move 
the [fIrst] 'one' into another column, add the [first] 'one' to the one below it. We thus 
obtain 'two', which we put below the [transferred] 'one', and we place the [second] 
'one' below two. We have therefore 'one', 'two', and 'one'. This shows that for every 
number composed of two numbers, if we multiply each of them by itself once - since 
the two extremes are 'one' and 'one' - and if we multiply each one by the other twice 
- since the intermediary term is two - we obtain the square of this number. If we then 
transfer the 'one' in the second column into another column, then add 'one' [from the 
second column] to 'two' [below it]. We obtain 'three' to be written under the 'one' [in 
the third column], if we then add 'two' [from the second column] to 'one' below it, we 
have 'three' which is written under 'three', then we write 'one' under this 'three'; we 
thus obtain a third column whose numbers are 'one', 'three', 'three' and 'one' . This teaches 
us that the cube of any number composed of two numbers is given by the sum of the 
cube of each of them and three times the product of each of them by the square of the 
other. If we transfer again 'one' from the third column to another column, and if we 
add 'one' [from the third column] to 'three' below it, we have 'four' which is written 
under 'one'; if we then add 'three' to the 'three' below it, we obtain "6 which is written 
under 'four'; if we then add the second 'three' to the 'one' below it, we have 'four' 



THE BEGINNINGS OF ALGEBRA 67 

which is written under 'six', then we place 'one' below 'four'; the result is another column 
whose numbers are 'one', 'four', 6, 'four' and 'one'. This teaches us that the formation 
of the square-square of a number consisting of two numbers is given by the square­
square of each of them - since we have 'one' at each end - then by four times the 
product of each number by the cube of the other - since 'four' follows 'one' at either 
end - since the root multiplied by the cube is the square-square, and lastly by six times 
the product of the square of each by the square of the other - since the product of the 
square by the square is a square-square. Then if we transfer 'one' from the fourth column 
into the fifth column, and we add 'one' to 'four' below it, 'four' to 'six', 'six' to 'four' 
and 'four' to 'one', then we write down the results under the transferred 'one' in the 
foresaid manner, and lastly write down last the remaining 'one', we have a fifth column 
whose numbers are 'one', 5, 'ten', 'ten', 5 and 'one'. This teaches us that for any 
number divided into two parts, its quadrato-cube is equal to the quadrato-cube of each part 
- since both ends have 'one' and one - to five times the product of each one by the 
square-square of the other - since 'five' succeeds at both ends on either side, and six times 
the product of the square of each one by the cube of the other - since 'ten' succeeds 
each five. Each of these terms belongs to the kind of quadrato-cube since the product 
of the root by the square-square and that of the cube by the square, both give the quadrato­
cube; we can thus find the numbers of squares and cubes to the power desired. 12 

X Xl X3 X4 X, x6 x7 x' X9 xlO XII .xU 

1 1 1 1 1 1 1 1 1 1 1 1 

1 2 3 4 5 6 7 8 9 10 11 12 

~ 1 3 6 10 15 21 28 36 45 55 66 

~ 1 4 10 20 35 56 84 120 165 220 

~ 1 5 15 35 70 126 210 330 495 

~ 1 6 21 S6 126 2S2 462 792 

~ 1 7 28 84 210 462 924 

~ 1 8 36 120 330 792 

~ 1 9 45 165 495 

~ 1 10 S5 220 

~ 1 11 66 

~ 1 12 

~ 1 

~ 
Fig. 1. 
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The second identity (abt = anbn is proved by the same method. 
AI-SamawJal supposes known the proof for n = 2, in Euclid's Arithmetical 
Rooks. In any case, proposition (1) makes the proof of (2) evident 
(ab)(ab) = (ab)2 = a2b2. And as he states this identity immediately after 
Proposition 1 we might think the proof is made for a commutative group 
noted multiplicatively (a and b commute). Whatever the case, for 
n = 3 he states that the product of two cubic numbers is equal to the 
cube of the products of their sides. 13 

¢::) [a3b3 = (ab)3]. 

Proof Let a and b be two cubic numbers, c and d their sides, e and f their squares, 
multiply c by d; cd = g; and a by b; ab = h; I say that h is equal to the cube of g. In 
Euclid's Arithmetical Books, it was shown that the product of the square number e by 
the square number f is equal to the square of g. If we multiply the last product by that 
of c by d, I mean by the number g, we obtain the cube of g. This results from the 
multiplication of the product of e by f by the product of c by d. But the product of c by 
f, multiplied by the product of e by d is equal to the product of c by e multiplied by the 
product of f by d as we showed in the preceding figure [Proposition 1). Q.E.D. 14 

In other words, to prove that a3b3 = (ab)3, he starts with a2b2 = (ab)2, 

multiplies both members by (ab) and obtains (ab)(a2b2) = (ab)(ab)2 = 
(ab)3. But Proposition 1 gives (ab)(a2b2) = (aa2)(bb2) = a3b3. 

He then proves the proposition for n = 4 and writes: 

In the same manner, it can be shown that the quadrato-cube of the product of two 
numbers is equal to the product of the quadrato-cube of one by the quadrato-cube of 
the other and so on in ascending order.15 

Not only the types of proofs we named RI are to be found in these 
authors, but also similar types of definition. Let us remember, for 
example, the definition of algebraic powers given by al-KarajI in 
al-Fakhrl and aI-Radle, and taken up by al-SamawJal in al-Blihir. The 
following table is set out verbally:16 

a = a l 

a2 = a·a 
a3 = a2·a 
a4 = a3'a = a2,a2 

as = a4 'a = a3,a2 

a6 = as'a = a4 'a2 = a3'a3 

a7 = a6.a = as'a2 = a4·a3 

a8 = a7 .a = a6 ,a2 = as.a3 = a4 'a4 

a9 = a8'a = a7 .a2 = a6 'a3 = as'a4 
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"and these ascending powers follow the same ratios to infinity". In 
other words, X' is defined by 

X' = X'-IX for any n E N. 

III 

To understand this kind of reasoning implies differentiating between 
others that resemble mathematical induction in order to prepare their 
comparison. An attempt in this direction had been made earlier. 
Freudenthal distinguished between two types of reasoning often mistaken 
for mathematical induction. One is "quasi-general", the other called 
"regression" . 

By "quasi-general", he designates a proof can be undertaken for any 
n (though, historically, it only operates on particular numbers). Even 
though the mathematician aimed at a true property for any n, he carried 
out his operations on particular numbers. While this reasoning may be 
considered an application of the principle of mathematical induction, it 
is not possible however, without stretching the interpretation, to attribute 
an explicit recognition of this principle to those who used it. 

As an example of this proof Freudenthal takes Proposition 7 from 
n 

Maurolico. 17 To show that 2 I. k = n(n + 1), Maurolico writes for 
k=l 

n n 
n = 4 only: I. k = 1 + 2 + ... + n and I. k = n + (n - 1) + ... + 1; 

~l ~l 
n 

whence for addition 2 I. k = n(n + 1). Then Freudenthal (1953, p. 22) 
wri~s: ~l 

Ohne Zweifel haben wir hier einen quasi-allgemeinen Beweis vor uns, wie man sich 
ihn exakter kaum wtinschen kann. Man braucht nur n fiir 4, n + 1 ftir 5 einzusetzen, urn 
einen echten allgemeinen Beweis zu erhalten. 

In this type of reasoning the mathematician would sometimes have 
reasoned as follows: P(1) is true by means of a quasi-general proof -
P(2) is also true, as well as P(3) and P(4); he concludes - more or less 
correctly - that this is so for all that follows. IS Two factors seem to be 
inseparable for describing this type of proof: (1) the repetition of the 
quasi-general proof for each value taken for the variable; (2) the 
possession of a method independent of particular values taken by the 
variable, i.e. a method that makes it possible to prove any n in the same 
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way as for a particular value, for example 4. It is understandable, 
therefore, that this proof, distinct from ordinary induction, cannot 
however be mistaken for mathematical induction. 

The other type of proof - called "regression" - designates a 
primitive mathematical form of induction; though derived somewhat 
formally from mathematical induction, it cannot however be identified 
with it. It is mathematical induction repeated each time for the number 
immediately preceding. It is a repetition of mathematical induction taken 
from a value of the variable until the smallest value for the verified 
property is reached. Regression is often conducted in a quasi-general way, 
and avoids repeating the proof for values other than the one chosen 
initially. This form is closer to mathematical induction than any other, 
or as Freudenthal (1953, p. 27) wrote: "Bei grosser LiberaliUit darf man 
das Verfahren vielleicht als vollsUindige Induktion bezeichnen, obwohl 
der eigenartige formale Aufbau der vollstandigen Induktion fehlt". 

Before Pascal, real mathematical induction as such did not exist, but 
only two types of proof, and if Maurolico recognized mathematical 
inductioQ, it was at the most as an archaic form of regression. This is 
Freudenthal's thesis in brief. 

However, before proceeding further, we want to show that "quasi­
general" and "regression" do not exhaust the description of all types of 
reasoning current in this field before Pascal; Freudenthal's generalization 
of Maurolico's example may limit understanding of the history of 
mathematical induction. To clarify these remarks, let us go back to 
some examples taken from al-KarajI and al-SamawJal. 

n n n 
1. To prove L i2 = L i + L i(i - 1), or, as he writes: "The sum 

i=! i=! i=! 
of the squares of the numbers that follow one another in natural order 
from one is equal to the sum of these numbers and the product of each 
of them by its predecessor". 19 

Schema of the proof: 

n2 = n[(n - 1) + (n - (n - 1))] = n[(n - 1) + 1] = n(n - 1) + n 
(n - 1)2 = (n - 1)[(n - 2) + «n - 1) - (n - 2))] = (n - 1) [(n - 2) + 1] 

= (n - 1)(n - 2) + (n - 1) 
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n 
L. i 2 = n2 + (n - 1)2 + ... + 12 
i=l = [n(n - 1) + (n - l)(n - 2) + ... + 2·1] + [n + (n - 1) ... + 1] 

n n 

= L. i(i - 1) + L. i. 
i=! i=! 

However, this schema is expressed for n = 4. For instance, to prove 
the above proposition, after giving the statement in general terms, 
al-SamawJal writes: 

Example: let AB, BC, CD, DE be numbers that follow each other in natural order from 
one. I say that the sum of the squares of AB, BC, CD, DE is equal to the sum of AE 
and the products of DE·CD, DC·CB and CB·BA. 

Proof. 

where 

DE2 = DE[CD + (DE - CD)] = DE(CD + 1) = DE·CD + DE 

CD2 = CD[BC + (CD - BC)] ;, CD(BC + 1) = CD·BC + CD 

BC2 = BC[AB + (BC - AB)] = BC(AB + 1) = BC·AB + BC 

AB2 = 1 = AB 

AB2 + BC2 + CD2 + DE2 = 
(BC·AB + CD·BC + DE·CD) + (AB + BC + CD + DE) 

Q.E.D.2o 

2. To prove i~! i 3 = ( i~l i r "if we want to add the cubes of the 

number that follow one another from 1 [according to the natural order] 
we multiply their sum by itself. The product is the sum of their cubes".21 

To prove this proposition al-SamawJal first proves the following 
lemma: 

LEMMA. The cube of a number is equal to the sum of its square and 
the double product of this number by the sum of numbers that follow from 
one [according to the natural order] to the predecessor of this same 
number. 
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Schema of the proof 

n-I n(n - 1) n-I 
I. i = ~ 2 I. i = n(n - 1) 
i=1 2 i=1 

n-I n-I 
~ 2n I. i = n2(n - 1) ~ n3 = n2 + 2n I. i. 

i=1 i=1 

As expressed in al-Biihir: 

Example: let AB, BC, CD, DE be these numbers. I say that the sum of the square of DE 
and the double product of DE by AD is equal to the cube of DE. 
_Proof AD = (CD·DE)!J:....where 2AD = ~Q.DE~ut~ multiplying tw~umbers by 
DE, we have 2AD-DE = CD·D£2, but CD·D£2 = D£2(DE - I) = DIf - D£2, therefore 
DE3 = D£2 + 2AD-DE. Q.E.D.23 

Then al-SamawJal can prove the proposition.24 

Schema of the proof: 

( n)2 (n_I)2 (n-I ) 
.I. =.I. i + n2 + 2n .I. i 
1=1 1=1 1=1 

( 
n-l ) 2 

= n3 + .I. i 
1=1 

(Lemma) 

( n-2 )2 (n-2 ) = n3 + .I. i + (n - 1)2 + 2(n - 1) .I. i 
1=1 1=1 

( n-2 ) = n3 + (n - 1)3 + .I. i 
1=1 

(Lemma) 

n 
= n3 + (n - 1)2 + ... + 13 = I. e. 

i=1 

As expressed in al-Biihir: 

Example: let AB, BC, CD, DE be these numbers that follow one another in natural order 
from one. I say that the sum of the cubes of AB, BC, CD, DE is equal to the square 
of AE.2s 

Proof 

A£2 = AD2 + DE2 + 2DE·AD 
= DE3 + AVZ ~ apply.!!!g the above figure 
= DE3 + ACZ + CD2 + 2AC·CD 
= DE3 + CD3 +ACZ 
= DE3 + CD3 + AB2 + BCZ + 2BC·AB 
= DE3 + CD3 + BC3 + AB2 
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but AB2 = AB3 = 1, therefore AF!- = DE3 + CD3 + BC3 + AB3. Q.E.D. 

In both these examples we observe two types of reasoning. The first 
one - R2 - is illustrated by the proof of the lemma in the second example. 
The second - R3 - was the one used to prove both propositions. 

With R2, al-SamawJal's proof is only complete for n = 4. But, on the 
one hand, the statement of the proposition is general and, on the other, 
al-SamawJal does not hesitate to use the same lemma without proof again 
for n = 2, n = 3. Everything indicates. therefore that for the mathemati­
cian the proof is the same for any number as for 4; or yet again the 
proof is written in the same way for any n. R2 may be considered a 
quasi-general reasoning and an application of mathematical induction, 
though without recognition of its principle. R3 is different: it explicitly 
concerns establishing the procedure for the transition from n to 
(n + I), either by proving the lemma, or directly, in order to then proceed 
by successive reductions or regression. It is moreover true that R2 
and R3 are used jointly as is easily observed: in the first example, R2 
intervenes for each equality; in the second example, R2 intervenes for 
the binomial formula. In any case, R3 is seen as an archaic form of 
mathematical induction. 

Again it should be noted that here R3 is a mastered technique: it was 
not simply used on rare occasions as was the case for Maurolico. To 
demonstrate the skill with which regression was practised, let us take 
al-SamawJal's proof: 

i i2 = n(n + 1)(2n + 1) . 
i=l 6 

Moreover, it is often stated in histories of mathematics that this 
formula was proved by al-KarajI. However, this is not true. AI-Karaji 

only gave an equivalent formula i i 2 = i i ( 1 n + .l) and there 
i=l i=l 3 3 

exists a proof using an archaic form of mathematical induction in 
Ibn al-Haytham's treatise, On the Measurement of the Paraboloid. 

n n 
AI-SamawJal first wants to prove (2n + 1) 1: i = 3 1: i 2 from which 

n i=l i=l 
the value of 1: i2 is drawn. He first proves the following lemmas: 

i=l 
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n n+1 
LEMMA 1. (n + 2) L i = n L i. The proof of this lemma belongs 

i=1 i=1 
to the quasi-general type outlined as follows: 

n n(n + 1) [ n(n + 1) ] n+1 
(n + 2) i~1 i = 2 (n + 2) = n 2 + (n + 1) = n i~1 i. 

LEMMA 2. n(n + 1) + (n + 1)(n + 2) = 2(n + 1)2 for n E N. 
Proof of the schema. 

n(n + 1) = (n + 1)2 - (n + 1) 
(n + 1)(n + 2) = (n + 1)2 + (n + 1) 

hence the lemma and hence we draw 

(n + l)[n + (n + 1) + (n + 2)] = 3(n + 1)2 

for n E N. 

n+1 n-2 
LEMMA 3. n L i = n L i + 3n2• He uses the above lemma for 

i=1 ;=1 
his proof. 

PROPOSITION. Given the numbers AB, BC, CD, DE, EF~G, GH, that follow one 
another in natural order from on0 sf!1 . ..that th'!..l!roduct of AG by FH is equal to three 
times the sum of squares of AB, BC, CD, DE, EF, FG. 26 

Schema of the proof 

n n+1 n-I 

(2n + 1) L i = n L i + (n + 1) L i proved earlier. 
i=1 i=1 ;=1 

By Lemma 1 we have: 

n-I n n-3 
(n + 1) L i = (n - 1) L i = (n - 1) L i + 3(n - 1)2 

i=1 i=1 ;=1 

by Lemma 3. 

Similarly, we have 

n+1 n-2 
n L i = n L i + 3n2• 

i=1 i=1 
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We have therefore 

n n-2 n-3 
(2n + 1) L i = 3n2 + 3(n - 1)2 + n L i + (n - 1) L i 

;=1 ;=1 ;=1 

= 3n2 + 3(n - 1)2 + 3(n - 2)2 + 3(n - 3)2 + 
n-4 n-5 

(n - 2) L i + (n - 3) L i 
;=1 ;=1 

by applying the lemmas 

n 
= 3n2 + 3(n - 1)2 + ... + 322 + 3 = 3 L i2• 

;=1 

As al-SamawJal27 expresses it: 

but 

therefore 

but 

therefore 

AG·FH = AH·FG + AF·GH 

AF·GH = AG·EF = AD·EF + 3EF2 and 

AH·FG = AE·FG + 3FG2, 

AE·FG = AF·ED = AC·DE + 3D& and 

AD·EF = AE·CD = AB·CD + 3CD2, 

-- -- -

75 

AG·FH = AC·DE + 3D& + 3FG2 + AB·CD + 3CD2 + 3EF2, 

but 

AC·DE = AD·BC = 3B~ since AB = 1 

and 

AB·CD = AC·AB = 3AB2 = 3 since AB = 1, 
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therefore 

AG·FH = 3FG2 + 3EF2 + 3DE2 + 3CD2 + 3BC2 + 3AB2. 
Q.E.D. 

In this chapter which deals mainly with the sum of n natural prime 
integers, the sum of their squares and the sum of their cubes, a fairly 
large number of examples are to be found, he often uses proof by regres­
sion, i.e. a form of primitive mathematical induction. 

However, if we follow Freudenthal's analysis, we should find only two 
types of reasoning - R2 and R3 - before Pascal. His thesis is doubtless 
correct when it concerns Maurolico's work which he examined. However, 
the situation is different for the work of al-KarajI and al-SamawJal. The 
first type of reasoning examined for the binomial development - R I -

is in no way to be mistaken for R2 and R3. For R I , we saw that an 
attempt was made to write the system of the transition from n to n + 1 
in the same way, whatever the initial number. The idea is as follows: 
since the procedure of the transition from n to n + 1 is true, even if 
the transition is illustrated by a particular n, then it is true for any number. 
Or again the procedure of transition is the same whatever the number. 
Everything indicates that this reasoning, while not formalized or stated 
theoretically, differs not only from R2 and R3, but moreover apparently 
recognizes the axiom of mathematical induction. 

IV 

Can one speak about mathematical induction in connection with these 
attempts by al-KarajI and al-SamawJal? 

Two contradictory answers have been given to a similar question 
in order to characterize attempts where RI does not even appear. For 
instance, in spite of Freudenthal's study, Bourbaki (1960, p. 38) still wrote 
in 1960 that the principle of mathematical induction "had been clearly 
conceived and employed for the first time by the Italian F. Maurolico 
in the 16th century". Rabinovitch did not hesitate to certify Levi Ben 
Gerson's reasoning as mathematically inductive, though it was less 
elaborate in this respect than that of al-KarajI and al-SamawJal.28 Contrary 
to these positions, others with some restrictions like Freudenthal, 
sometimes without restriction like Hara,29 grant Pascal the sole merit 
for applying mathematical induction. 

These apparently exclusive positions do, however, have one point in 
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common: they hinder understanding as to why new forms of mathematical 
reasoning arose. To refuse to describe the various attempts as mathe­
matical induction in order to reserve it for Pascal bars the way to 
understanding the new forms of reasoning that arose with the renewal 
of algebra in the eleventh century.30 On the contrary, to qualify every­
thing as mathematically inductive, and as a result to find the principle 
of this reasoning everywhere, by suppressing differences prevents 
pinpointing the appearance of new forms. To evade such difficulties, it 
is not rare for a historian to choose an eclectic position. Bourbaki (1960), 
for example, after affirming the priority of Maurolico, then writes "that 
more or less conscious applications" of the principle of mathematical 
induction "are to be found in Antiquity". To avoid posing the problem, 
the origin of mathematical induction is frequently mentioned as well. The 
very ambiguity of the term may be convenient: origins are multiple, 
embedded in the memory of time, and make it possible to invert 
chronological and logical order without verification in the course of 
historical reconstitution. Is it not a matter of genesis where the two orders 
are indiscernable? 

The difficulty of the problem as we can see, makes a unique answer 
impossible; an answer intimately linked to the point chosen from which 
to go back in time for our necessarily "recurrent history". To decide 
without further concern that one or another formulation of the principle 
of mathematical induction is sufficient, is to run the risk of integrating 
in the history of the principle what another choice might have assigned 
to a prehistoric museum. In fact, for the historian, the main problem 
lies in avoiding trivial historical "recurrence", which makes it impossible 
to reconstruct a mathematical activity whose history one is supposed 
to write. 

If, by mathematical induction, we mean, like Peano, reasoning based 
on the following assertion, or another equivalent form: 

Let P a property defined on N, if P(I) and 
[P(n) ~ P(n + 1)] then P is true for n E N, 

it would be difficult to consider attempts before Pascal as mathematically 
inductive. Furthermore, Pascal's attempt could only be so described 
with much indulgence. If we confine ourselves to a rigorous formula­
tion - which is essential - attempts that do not state the argument of 
induction - P(n) ~ P(n + 1) - for any n in an explicit way will be rejected 
as outside mathematical induction. But as this rigour is related to a 
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complete system of axioms - known as Peano's system - which includes 
precisely the exact formulation of the principle of mathematical induc­
tion, all earlier formulations are necessarily naive. 

Therefore to ask about the status of attempts before Peano's formu­
lation implies at least one question: are such nai'vetes equally valid? 
Or do they differ significantly? After all, perhaps for a contemporary 
logician of our time, even Peano's formulation appears somewhat naive? 

As far as we are concerned, let us go back briefly to Pascal. Passages 
in the Traite du triangle arithmetique (ed. Seuil, 1963, p. 57) on 
mathematical induction are known and often cited. We shall only cite 
the most significant passages: 

If an arithmetical triangle is found which has this quality ... , I say that the following 
triangle will have the same property. 

Whence it follows that all arithmetical triangles have this quality. For the first has it 
by the first lemma, and it is even still evident in the second; therefore by the second lemma 
the next triangle will have it too, and consequently the next, and so on to infinity. 

Pascal's formulation is undoubtedly much more abstract and elaborate 
than any previous attempt. Only thirty years before Pascal, Bachet was 
only capable of proving a less elaborate formulation of this reasoning. 
He wrote (1624, p. 5): 

Thus availing myself of what had been proved for three or four numbers, I completed 
the proof in the same way. And if six numbers were given, I would use what had been 
proved for five and so on, if more were given. Therefore the means of proof is 
universal and applicable to any multitude of numbers. 

In spite of differences between Pascal's formulation and earlier 
attempts, they do have something in common: they are clearly shown 
by the use Pascal makes of his own principle. But it is at precisely this 
point that the scope and limits of Pascal's formulation may be under­
stood. 

1. Pascal, like his predecessors, applied the essential point of the 
principle of mathematical induction to its original field: combinatorial 
methods and related problems. But even if, here and there, this prin­
ciple or similar types of reasoning are applied to other problems of 
number theory or algebra, combinatorial methods remain a privileged 
area for this application. 

We saw that al-KarajI and al-SamawJal use Rl as a proof method in 
this field which will be used later as an exemplary field for illustrating 
the principle of mathematical induction. Well before Pascal, Levi Ben 
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Gerson, like Frenicle31 (1605-1675) later on, applied a simpler but 
equivalent form of RI to the domain of permutations. Lastly, Bachet wants 
to prove that "if three or more numbers are multiplied together, the 
product will always be the same, in whatever order they are multiplied".32 
So the appearance of this type of reasoning may appear to be a techni­
cally adapted solution of a theoretical problem: to prove for the field 
of general questions of enumeration, or problems of the distribution of 
the elements of finite sets into various subsets ordered or not, according 
to different laws and later grouped together under the heading of 
combinatorial analysis. 

2. Pascal, like his predecessors, stated the conclusion of the proof 
corresponding to his intuitive idea of N which limits the generality of 
the formulation. In fact ("in) - with n integers - pen) is stated according 
to a concept of N which is none other than an intuitive description 
according to which the elements of this set are 0, 1, 2, 3 and "and so 
on to infinity". 

3. Despite his general, clear formulation of the argument of mathe­
matical induction as he applied it, Pascal reverted to his predecessor's 
usage. In fact, although it is recognized that [pen) => pen + 1)] is 
formulated verbally in a general way, i.e. for any integer and with the 
hypothesis: pen) is true, in practice, he only takes particular numbers 3 
and 4. This is always the case in the two most important proofs where 
he applies the principle of mathematical induction. To prove the theorem 
equivalent: to C~/C~+I = (p + 1)/(n - p), he verifies for n = 1, supposes 
it true for n = 4 and proves for n = 5. And he concludes in a way which 
in some respects is reminiscent of those who use R I . He writes: 

It will be shown similarly for the following, since this proof is only founded on this 
proposition which is found in the preceding base and each cell is equal to its preceding 
base which is universally true.)) 

The other example is equivalent to 

a+b-J a+b-J 

<1>(a, b) = i~a C~+b_1 I k~O C~+b_1 

where <1>(a, b) is the sum attributed by the stake to player A in a game 
between two players A and B, and where a parts are missing in A and 
b parts in B. He also verifies the theorem for n = 2, supposes it true 
for n = 4 and proves it for n = 5. He concludes (ed. Seuil, 1963, pp. 60ff.) 
in a similar manner to the above conclusion. 
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Pascal, like his predecessors, never named the reasoning he used. 
The absence of a name apparently implies that this reasoning is only 
a specific procedure for a domain and not yet an autonomous proof, 
independent of a field of application, which would consequently require 
the attribution of a name. However, this name only appears - and this 
is significant - with the English school: George Peacock and Morgan 
(Cajori, 1918). 

5. To judge the principle as a general method of proof at its true value 
would imply examining how Pascal's successors received it. If it had 
been understood as a general method, it would lead to at least two 
transformations: a clear distinction between complete induction and 
incomplete induction, and on the other hand, a rejection of proof by 
incomplete induction. However, neither this distinction nor this 
rejection were really accepted. Still in the eighteenth century, to take only 
a French example, we may read in the article on "Induction" in the 
Encyclopedie methodique: 

the signification of this term will be clearly understood for example. We have 

He who without knowing the exact and general method of proving this formula, will 
conclude from having verified it in the case m = I, m = 2, m = 3, etc. will judge by 
induction. 

Therefore this method must only be used for lack of a more precise one, although in 
this case, it should be used with great circumspection, since sometimes wrong conclusions 
might be reached. 

Even if after Pascal and independently of him, as in Jacques Bernoulli, 
we sometimes come across a distinction between complete mathemat­
ical induction and incomplete induction, it remains that this distinction 
is soon forgotten by its own author, which shows that at this period, at 
least, a real understanding of the necessity for mathematical induction 
was far from existing. In fact, J. Bernoulli not only established this 
distinction, but also denounced the use of incomplete induction as 
unscientific. Did he not write in his criticism of Wallis (1713, p. 95): 

In fact, apart from the fact that the manner of proof by induction is scarcely scientific, 
moreover, it requires special work for each series. 
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And yet, not Wallis but also Montmort, de Moivre and Jacques Bemoulli34 

himself, continued to demonstrate and prove in one way or another 
using induction. 

These various arguments show, I think, that Pascal, by his applica­
tion of the principle of mathematical induction, and in some respects 
by his formulation of this principle, had not completely broken with an 
RJ type reasoning. This explains why his principle could not impose itself 
as an independent method from a particular application, a principle which 
should have excluded all proof by simple induction for good. However, 
there is no question of denying the novelty of Pascal's formulation in 
relation to unformulated usages of RJ or even earlier formulations such 
as that of Bachet. It is precisely this originality that enables a modem 
reader to recognize Pascal's principle, and despite a lack of precision 
in its outdated formulation, as a precursor of mathematical induction. 
In other words, if we start with formulations after Peano, we find strong 
traces that enable us to discover the principle of induction in Pascal. 
But if we start with Pascal, RJ will be integrated as inductive mathe­
matical reasoning, and regression as an archaic form of mathematical 
induction, an integration difficult to reach from Peano's formulation. 
Therefore, in a "recurrent history", Pascal's attempt appears as the cul­
mination of that of al-KarajI and al-SamawJal, while Peano's attempt 
appears to be the culmination of attempts which started with Pascal. 
To avoid making "recurrent" history commonplace, we must choose a 
starting point in the past that is a culmination, a culmination that is 
necessarily the culmination of a beginning. The double reference thus 
necessary for the historian enables us to conclude: al-KarajI's and al­
SamawJal's methods of proof - mainly RJ and regression in some way 
- constitute the beginning of mathematical induction, if one starts with 
Pascal. 

NOTES 

1. G. Vacca (1909). Vacca was so convinced of the importance of his discovery that 
he published it in several other articles (1910) and (1911). 

2. Al-KarajI (or al-KarkhI). Known since the translation of his book on Algebra by 
Woepcke and Hochheim on his book on Arithmetic (Klififi al-l;Iislib). Little is known 
about his life other than he lived in Baghdad in the late 10th century and early 11th 
century. For a scientific bibliography on al-KarajI, see Anbouba's introduction (1964) 
and infra, 1.2. 

3. Al-SamawJal ibn Ya\J.ya ibn 'Abbas al-MaghribI, died in 1174. Al-SamawJal's 
autobiography is to be found in his polemical book, Ifl;llim al-Yahud (Perimann, 
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ed., 1964). A scientific bibliography is given in Rashed and Ahmad, eds. (1972). This 
chapter is based on the MSS 2718 Aya Sofia and 3155 Esat ef.; page numbers refer 
to the first manuscript. 

4. Itard (1961, p. 73) wrote: "However, some demonstrations by recurrence or complete 
induction may be found. We never come across the modern rather pedantic 
leitmotiv: 'we have checked the property for 2, we have shown that if is true for a 
number, it is true for the following, therefore it is general' and those who only see 
complete induction in this hackneyed expression have the right to say it does not 
appear in the Elements. 

We see it in prop. VII, 3, 27 and 36; VIII, 2, 4 and 13; IX, 8 and 9". 
5. Al-SamawJal, al-Bahir, f. 43" Rashed and Ahmad, eds. (1972), p. 104. 
6. Ibid., f. 43" p. 104. 
7. Ibid., f. 44" p. 106. 
8. Ibid., ff. 44v-45', pp. 107-108. 
9. Ibid., f. 45" p. 109. Our italics. 

10. Al-SamawJal quoted in extenso the passage of this lost work quoted here. 
11. To our knowledge, this is the first text, to state rules in such general terms. According 

to Needham (1959, p. 135), Yang Hui's book dates back to 1261, therefore one 
and a half centuries after al-Karaji's text. Al-Khayyam (1048-1131), in the wake 
of al-KarajI, and perhaps independently, was probably acquainted with these rules. 
Later in the 13th century, the same results are to be found in Na~!r aI-Din al-TOs! 
(ed. A.S. Sa"idan, 1967, p. 145), with one exception: the binomial formula is always 
written verbally 

They are also to be found in the 15th century in al-KashI's Key to Arithmetic 
(see Luckey, 1951, p. 24). 

For more details, see infra, pp. 261-274. 
12. In the table reproduced here, we have replaced the terms, root, square, cube ... 

with the symbols x, x2, r, ... Al-SamawJal, al-Bahir, ff. 45'-47', Rashed and Ahmad, 
eds. (1972), pp. 109-112. 

13. Ibid., f. 44" p. 105. 
14. Ibid. 
15. Ibid., ff. 45'-45', p. 108. 
16. From Fakhrf, p. 48, reproduced in al-Bahir, pp. 17-18. 
17. Omnis radix multiplicata in radicem sequentem, producit duplum trianguli sibi 

collateralis. Demonstration: Exempli gratia, ducatur quaternarius in sequentem 
radicem, scilicet, quinarium: & producuntur 20. Aio, quod 20. duplus est ad trian­
gulum ipsi quaternario collateralem. Sumantur enim ab unitate ad quaternarium 
radices; quibus applicetur totide & ordine praepostero ab unitate radices; singulae 
singulis: Sic enim fiet, ut crescentes cum decrescentibus singuli singulis conjuncti 
numeri faciant quatuor summas aequales: hoc est quatuor quinarios, quare earum 
aggregatum erit planus numerus, qui fit ex ductu quaternarij in quinarium: & idcirco 
20, erit talis planus: Duplus autem est planus ipse ad triangulum quaternarij: quan­
doquidem, per diff. talis triangulus est aggregatum unius dictorum ordinum: quod 
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est dimidium plani: Igitur 20. duplus erit ad triangulum quaternarij. Et similiter in 
omni casu id quod proponitur demonstrabimus. 

Cited by Freudenthal (1953, p. 21) from Maurolico Arithmeticorum libri duo in 
Opuscula mathematica (1575). 

18. I.e. instead of reasoning as usua! in an almost general way for a particular n, he repeats 
the same reasoning for some particular numbers. 

19. AI-Samaw'al, al-Blihir, f. 54', Rashed and Ahmad, eds. (1972), p. 127. 
20. Ibid., pp. 54', 54'0 pp. 127-128. Our translation, like other similar translations, follows 

the text closely, except for the substitution of signs for the terms: sum, difference, 
equality, etc. 

21. Ibid., ff. 6P-62', p. 143. 
22. Ibid., f. 62', p. 143. 
23. Ibid., f. 62v, p. 143. 
24. Ibid., ff. 62'-62v, pp. 143-144. 
25. Ibid., f. 62'0 p. 144. 
26. Ibid., f. 53', p. 125. 
27. Ibid., f. 53'0 p. 125. 
28. This is basically the proof of a formula equivalent to p •• ! = (n + 1)P. where p. is 

the set of permutations of n distinct elements. For Levi ben Gerson, see (1909, 
pp. 48ff.). See Carlebach (1910) and Rabinovitch (1970, p. 242). 

29. Hara (1962, p. 287) wrote: "For the first time in Pascal, we encounter not only a 
systematic application but an almost completely abstract formulation of the method 
rigorously intended". Hara thought he conveyed not only his point of view but that 
of M. Freudenthal. However, the latter is apparently more reserved on this point as 
he wrote (1953, p. 33): "Nicht die Anwendung, auch nicht die systematische 
Anwendung ist das Auffallende, sondern die fast vollstiindig abstrakte Formulierung, 
die iibrigens spiiter nocheinmal, an anderen Objeckten, wiederholt wird". 

30. This involves the application of arithmetic to algebra or the extension of algebra to 
elementary arithmetical operations, so these operations may be applied to [0, 00]. 
The obvious result of this project was to define the frontiers between algebra and 
geometry and achieve autonomy and specificity for algebra. The principal means was 
to extend abstract algebraic calculation. As this renewal progressed, the following 
discoveries were made for the first time in history: 
(1) the multiplication and division of algebraic powers; 
(2) the theory of the division of polynomials; 
(3) the calculation of signs. 

Concurrently, we encounter the calculation of binomial coefficients and the 
binomial formula, including various enumeration problems, later to be known as com­
binatorial analysis. See Rashed (1974) and our introduction to al-Samaw'al (1972). 

31. For Fr~nicle and for Levi ben Gerson earlier, this concerns permutation problems. 
In fact Fr~nicle proves a formula equivalent to p •• ! = (n + I)P •. For instance, 
having shown that P3 = 3P2 = 6; P4 = 4P3 = 24; Ps = 5P4 = 120, he writes (1729, 
p. 92), "and so on, we must multiply the preceding combination (read permutation) 
by the number of the given multitude; and that is clear proof which serves to demon­
strate the construction of the table". For studies on Fr~nicle, see Coumet (1968, 
pp. 209ff.). 
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32. Bachet (1624, p. 2): Bachet's proof is based principally on type R I . Here Bachet writes 
as follows (pp. 3ff.): "Euclid proved in VII-16, that for two numbers, whether the 
first is multiplied by the second, or the second by the first, the product is always 
the same. Here I want to prove that the same applies to three or more numbers. 
However, two or more numbers are said to be multiplied together when we multiply 
two together and the product of the one and the product of the other, and so on or 
as many numbers as there are. 

Firstly, let us take three numbers A, B, C, and by multiplying A by B we have 
D, which multiplied by C produces E. Let us change the order and multiply B by 
C which gives F which, multiplied by A gives G. Let us change the order once 
again and multiply A by C, which gives H which, multiplied by B gives K (these 
are all the different ways for multiplying three numbers together). I say that three 
products E·K·G have the same number. Since B multiplied by A·C. gives D·F, 
there is a ratio of A to C and D to F therefore the same number is given by 
mUltiplying A by F and C by D in 19 in 7. Let us start with E and G the same number. 
Similarly, since C multiplied by A and B gives Hand F, there is a ratio between A 
and B and between Hand F. Therefore, the same number is given multiplying A 
by F and B by H. Therefore, the same number is given mUltiplying A by F and B 
by H, therefore KG is the same number. Consequently, all three E·K·G. are the 
same number which it what had to be proved. 

Now let us take four numbers A· B· C· D and multiply A by B and the product 
of C which gives E, which multiplied by D gives K. Then let us change the order 
and mUltiply D by C and the product by B which gives F which, multiplied by A 
gives H. I say that K·H is the same number and that the same number will always 
be produced in any way when we multiply the four numbers A· B· C· D together. Since 
by mUltiplying together on one side the three numbers A· B· C and on the other 
side D·CB, we find B·C on both sides, multiply B·C together, which gives G. 
However, by what was proved for three numbers the same E, I say, which is made 
by mUltiplying A by B and the product by C, the same E is reached as well by mul­
tiplying B by C and the product (i.e. G) by A. Similarly, we will prove that F is 
made by mUltiplying D by G, therefore as the same G multiplies the twokD produces 
E.F. There is the same ratio in A·D between E·F. Consequently, the same number 
is reached by multiplying A by F and D by E. Therefore, K·H are the same number. 
However, using the same means we always prove the same. Since of four numbers, 
by multiplying three together on one side and three on the other, there will always 
be two the same between three taken from one side and the other and consequently 
the same proof occurs". 

33. Pascal (ed. Seuil, 1963), p. 53. This is the twelfth consequence which states: "in every 
arithmetical triangle, two contiguous cells having the same base, the higher is to 
the inferior like the multitude of the cells from the higher to the top of the base to 
the multitude of those from the inferior to the bottom inclusive". 

34. For instance, after criticizing Wallis, J. Bernoulli proceeds by complete induction 
to find the general rule for the sum of squares, cubes, etc. and n first natural integers, 
i.e. 

n 
Llf 

k=l 

with c = 1, 2, 3, ... See Bernoulli (1713, pp. 96ff.). 



CHAPTER II. NUMERICAL ANALYSIS 

THE EXTRACTION OF THE nTH ROOT AND THE 

INVENTION OF DECIMAL FRACTIONS 

(ELEVENTH TO TWELFTH CENTURIES) 

INTRODUCTION 

In the history of mathematics a discovery is sometimes seen to have 
no real effect for a more or less indefinite period of time. Buried in a 
"relative absence", it remains intact though outside the mathematical 
corpus in current use. One may speak of "absence" in so far as when 
the discovery occurred, it did not emerge as an active part of mathe­
matical practice; but its "absence" is relative since the discovery did take 
place and was transmitted. Subsequently, even if its transmission was 
presented as the simple heritage of a succession of authors and not as 
the communication of a chapter of received mathematics, the discovery 
becomes an inalienable acquisition for the history of the discipline. 

The invention of decimal fractions is a good illustration of the 
situation we have just described. Here as elsewhere, a rigorous exami­
nation will not fail to recognize the "absence" that shrouded it for some 
time as a component part of the history of the invention itself. However, 
not infrequently, when historians study inventions - in this case decimal 
fractions - they adopt towards it one of two attitudes, both of which, 
though exclusive, negate objective history. 

In the most frequent case, they may record the discovery and its 
various dates in a completely empirical way without in the least 
explaining its relative eclipse, in which case a good explanation is no 
more than a clearly established succession, and the temptation is great 
to rush off to the archives in search of a possible forerunner. Of history, 
often all that remains is chronology, sometimes archaeology, and always 
a historical novel. 

The more informed historian may isolate the conditions that made 
the invention possible and then interpret its interrupted advance in terms 
of theoretical or practical obstacles. He then runs the risk of reducing 
historical reality to these conditions, and producing as a result, instead 
of history, either a myth or at best a philosophy of history, since, just 
as important as the conditions of possibility of a conceptual invention are 
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its own possibilities of application. The latter, by the modifications they 
enforce, the corrections they require, the extensions they sometimes 
necessitate, not only delimit the proper domain of existence for con­
ceptual innovation, but even more confer on it true historical reality. 

We shall see that the invention of decimal fractions is situated at the 
completion of two movements, already advanced in the twelfth century; 
the first aimed to renew algebra by arithmetic by means of the exten­
sion of abstract algebraic calculation; the other movement in progress 
at the same time, in which the theory of decimal fractions is integrated, 
effected a return to number theory and numerical analysis by renewed 
algebra. This return was also destined to advanced a topic previously 
confined to a simple collection of procedures and formulas: numerical 
methods of approximation. 

An examination of the conditions of possibility which we shall 
continue later on, always possesses a hypothetical and sometimes a 
heuristic value. It has enabled us in fact to pinpoint a set of dis­
coveries, and present for the first time unpublished and unknown 
documents which set forth decimal fractions for the first time, the so­
called Ruffini-Horner method, as well as the general formula of 
approximation of the irrational root and other iterative methods for 
improving approximation. But it then seemed indispensable to try to 
understand why decimal fractions, already invented and endowed with 
theoretical means, and the object of effective transmission, had somehow 
remained outside history and, as a result, it was necessary to examine the 
conditions governing their application. This invention had to await the 
relatively late elaboration of the logarithmic function in order to 
encounter one of its first fields of application as well as its first plane 
of real existence. 

But before developing this new history of decimal fractions, let us stop 
to consider the almost standard description historians usually provide. 

It has in fact been customary to consider Simon Stevin's La Disme1 

as a work which sets forth decimal fractions for the first time. 2 For 
centuries nothing or practically nothing had arisen to challenge this 
conviction. Admittedly, when historians had reached a clearer under­
standing of Stevin's Western predecessors, they were somewhat 
disconcerted, but at no time did they question the priority of the Flemish 
mathematician. 

Indeed, an intermittent usage of decimal fractions in mathematical 
works prior to Stevin had been observed; for instance, the names of 
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Christoff Rudolf, Peter Apian and many others have been cited, but it 
was soon admitted that their knowledge of decimal fractions remained 
fragmentary and partial. While Stevin gave an explicit exposition, they 
only gave them for specific problems. This opinion was only to be 
shattered in 1936 by the discovery of Bonfils' text of 1350 by Salomon 
Gandz and George Sarton,3 and in particular Gandz's commentaries; 
for some time it was believed that the priority for the invention of decimal 
fractions must in fact be attributed de facto and de jure to Bonfils. 

A balanced reading, freed from the artefact of a predecessor was 
soon to dispel the threat. In fact, at best in Bonfils' text one only encoun­
ters an unstructured programme of the theory of decimal fractions. 4 

Nevertheless, whether it concerns a limited occurrence or an unstructured 
programme, these were the facts that historians wanted to integrate into 
the history of the invention of decimal fractions. Consequently, a doctrine 
was seen to emerge which may be summarized as follows: no attempt 
before Stevin had attained the level reached by him; at most his prede­
cessors possessed a limited knowledge of decimal fractions.s 

But fairly recent investigations have shown this viewpoint to be 
erroneous. In 1948, the German historian Paul Luckey (1951, pp. 102ff.) , 
proved that in his Key to Arithmetic al-KashI (d. 143611437) gives an 
exposition of decimal fractions just as competent as that of Stevin. 
Furthermore, as his demonstration was irrefutable, historians rallied round 
Luckey in increasing numbers, and attributed the discovery, and the 
invention of the thing and the name, to al-KashI; this time Stevin's 
priority was seriously compromised. One would therefore expect the 
history of this chapter of mathematics to be rewritten, since discussion 
about priority involves the status of the theory itself. But instead of 
supplementary analysis, necessary for a clearer understanding of its status, 
only two attempts are to be found: an eclectic one purely and simply 
integrates the name of al-KashI into the old historical picture of decimal 
fractions. The other reiterates Gandz's mistake; it hastens to scrutinize 
the past in search of what might be called the "Bonfils" of al-KashI. 
So, just to give one example of the eclectic tendency, let us read what 
Struik wrote quite recently: "The introduction of decimal fractions as a 
common computational practice can be dated back to the Flemish 
pamphlet De Thiende published at Leyden in 1585, together with a French 
translation, La Disme, by the Flemish mathematician Simon Stevin 
(1548-1620), then settled in the northern Netherlands. It is true that 
decimal fractions were used by the Chinese many centuries before Stevin, 
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and that the Persian astronomer al-KlishI used both decimal and sexa­
gesimal fractions with great ease in his Key to Arithmetic (Samarkand, 
early fifteenth century). It is also true that Renaissance mathematicians 
such as Christoff Rudolf (first half of the sixteenth century) occasion­
ally used decimal fractions, in different types of notation".6 

The traditional history of decimal fractions was thus expanded to 
incorporate al-KlishI, after having implicitly limited the importance of 
his contribution. As a result, historians of the second tendency did their 
utmost to make the discovery of decimal fractions date back to the tenth 
century and attributed it to an Arab mathematician, al-UqlIdiSI,7 
Concerning his Treatise of Arithmetic - al Fu~ul - A. Saidan (1966, 
p. 484) writes: 

The most remarkable idea in his work is that of decimal fractions. AI-UqlldisI uses decimal 
fractions as such, appreciates the importance of a decimal sign, and suggests a good 
one. Not al-KashI (d. 143617) who treated decimal fractions in his MiftiiJ:t al-lfisiib, but 
al-UqlIdisI, who lived five centuries earlier, is the first Muslim mathematician so far known 
to write about decimal fractions. 

This is a brief outline of our problem based, as can be seen, on the 
random discovery of texts. It will be understandable why the prudence 
shown by historians is only apparent, and leads them in many cases to 
overt eclecticism; moreover, peremptory affirmations such as those of 
Gandz on Bonfils and Saidan on al-UqlIdisI, simply point to a hasty 
and strongly biased reading. Since, in the final count, must not the req­
uisite for a history worthy of its name be to place an invention in its 
context, and by rigorous conceptual analysis first seek the conditions that 
made it possible? 

In this precise case and in the final analysis, it concerns algebra. Our 
first task is to isolate these conditions. 

1. NUMERICAL METHODS AND PROBLEMS OF APPROXIMATION 

The simultaneous location of algebraic concepts and techniques which 
we made elsewhere (al-SamawJal, ed., 1972), have enabled us to pinpoint 
a renewal of algebra in the eleventh century. Initiated by al-KarajI (late 
lOth-early 11th c.), pursued by his successors, in particular al-SamawJal 
(d. 1174), it aimed to "operate on unknown quantities in the same way 
as the arithmetician operates on known quantities". In short, it means 
applying arithmetic to the algebra of al-KhwarizmI and his successors. 
The main instrument for the "arithmetization of algebra" (Rashed, 1974, 
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pp. 63-69; supra, 1.3), as we cited it, is the extension of abstract alge­
braic calculation. This instrument proved its effectiveness, not only for 
the development of algebra itself as "the arithmetic of unknowns", as 
it was then called, but also for the advancement of number theory and 
numerical methods as well. 

The above interpretation just reviewed has, in our opinion, made it 
possible to reach a clearer understanding of one of the main tendencies 
of Arabic algebra. It might have remained, it is true, a simple, plau­
sible, though unrestrictive interpretation. Its ability to account for the 
facts and concepts of al-KarajI's school, and its capacity to suggest 
paths which lead to the discovery of new data, suffice to confer upon 
it greater reliability. 

Now an examination of the mathematical works of al-KarajI's school 
has enabled us to show that: 

(1) Several inventions hitherto attributed to fifteenth and sixteenth 
century algebraists were in fact the work of this tradition. The results 
achieved by mathematicians from al-KarajI's school include complete 
theories such as polynomial algebra; key propositions - the binomial 
theorem and the table of coefficients; tested algorithms - e.g. the 
divisibility of polynomials; demonstration methods such as mathematical 
induction. 

(2) AI-KashI's work is the culmination of a new start initiated by 
algebraists in the eleventh and twelfth centuries. It includes the essen­
tials of their basic results. 

The above description entitles us to advance the following hypothesis: 
decimal fractions, whose invention is still attributed to al-KashI, must 
have been the work of these eleventh and twelfth centuries algebraists. 
Did they not possess all the necessary theoretical means for its 
conception? However, out of all al-KarajI's successors, al-Samaw)al 
was the most instrumental in isolating an interpretation of the above 
hypothesis. His algebraic work, which we have already analyzed, is 
clearly presented as a theoretical and technical contribution for achieving 
al-KarajI's objective. Furthermore, his Treatise on Algebra - al-Biihir 
- confirms that of all of al-KarajI's successors, he was undoubtedly 
one of the most committed to accomplishing his objective. 

Now, in another treatise, a Treatise on Arithmetic, composed in 1172 
(two years before his death), al-Samaw)al gives an exposition of decimal 
fractions.s This treatise is presented as a conclusion to his Treatise on 
Algebra, and consequently, as his ultimate mathematical achievement. 



90 CHAPTER II 

This biographical information enables us to draw a broad outline of the 
context of this invention. 

The results achieved by renewed algebra apparently made possible 
an authoritative return to arithmetic, seen as its privileged field of 
application. The generalization of procedures and methods only used 
for particular cases by arithmeticians was then achieved, as well as 
providing them with others, unknown to them. This set of procedures 
and methods was henceforth to be part of what was later to be called 
"numerical analysis". The theory of decimal fractions saw the light of 
day as the completion of the first movement of the return as al­
Samaw)al's Treatise on Arithmetic shows; it was not only a theory, but 
also a necessary technique for ensuring this return. In short, the first 
invention of decimal fractions is presented as the theoretical solution 
of a problem both theoretical and technical. 

This description has enabled us to shift the dates of the various 
discoveries, including decimal fractions, back by two and a half centuries 
at least, and we are now in a position to pose questions which histo­
rians have neglected: why such inventions? why did they occur at that 
place and time? 

To give a detailed description, we first need to understand the con­
ceptual and technical configuration in which the theory of decimal 
fractions is integrated. However, in al-Samaw)al's Treatise, this theory 
follows several chapters dealing with problems of approximation and, 
in particular, the approximation of the nth positive root of a number. It 
involves the approximation of algebraic real numbers where each one 
is defined as the root of the equation ;XI = Q, with n = 2, 3, ... , which 
cannot however be found with the aid of decimal numbers. By "to 
approach", al-Samaw)al intends to find a real number by means of a 
sequence of known numbers with an approximation which the mathe­
matician can make as small as desired. It therefore implies measuring the 
difference between the nth irrational root and a sequence of rational 
numbers. For instance, he first writes in general terms: 

What is extracted by approximation from irrational roots by means of calculation is by 
what we want to obtain a rational quantity close to the irrational root. There may exist 
a rational quantity closer to the irrational root than that. There may then exist a third 
rational quantity, closer to the irrational root than the second and the first quantity, since 
for any rational quantity supposed close to an irrational root, the difference between 
them is in truth a straight line, and a line is capable of being divided and partitioned 
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indefinitely. Which is why it becomes possible to find continually a rational quantity close 
to the irrational root, and find another rational quantity closer than the first to the irra­
tional, and so on indefinitely.9 

This is the general problem raised in these chapters. AI-SamawJal 
was moreover aware of the difficulty the above interpretation raises when 
it concerns powers higher than 3; a fascinating problem but beyond the 
scope of this study. Let us keep the general perspective in mind where 
the question of approximation is explicitly posed as a measurement of 
a difference, and see how this problem was introduced and solved. 

1. The Ruffini-Horner Method 

In an important paper published in 1948, Luckey (1948, pp. 217-274) 
established that al-KashI possessed a general method for the extraction 
of the nth root, which is none other than the application of the method 
invented by the nineteenth-century mathematicians Ruffini and Horner 
to a particular case. At that time the history of this method including 
al-KashI's other results was completely unknown; but as al-Kashi:, while 
not citing his predecessors, had not claimed the discovery for himself, 
historians abandoned their habitual caution and substituted history for 
myth: they alluded to a twelfth century Chinese source. This viewpoint 
has persisted since Luckey in spite of recent works 10 just as remark­
able on the fifteenth century mathematicians. 

We will show that al-SamawJal's treatise of 1172 contains the 
Ruffini-Horner method, at least as it was formulated and applied by 
al-KashI about two and a half centuries later. AI-SamawJal did not claim 
to be the author either; in his exposition he apparently assumed the reader 
familiar with the various operations involved and, in fact, it is correct 
that algebraic concepts and techniques necessary for its formulation go 
back to al-KarajI's school. We are now in a position to advance our 
hypothesis: as it appears in al-SamawJal's Treatise of 1172, this method 
is the work of al-KarajI's school. But we must first of all define the 
method and clarify its formulation in the twelfth century. We shall avoid 
repetition by limiting ourselves to one example which fully describes 
it. 

To extract the fifth root ll of 

Q = 0; 0,0,2,33,43,3,43,36,48,8,16,52,30. 
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which is equivalent to seeking the positive root of the equation 

f(x) = x' - Q = 0. 

Several stages in search of the solution can be distinguished. 

Preliminaries 

(1) 

We first determine the positions of the form nk with n = 5 and k E 71.. 
We obtain in particular the positions 0, -5, -10, -15. Call these 
positions perfect positions, i.e. positions where the different numbers 
of the positive root are to be found. 

Each position will be marked twice - see Table 1. 12 

We add the necessary number of zeros on the right-hand side to obtain 
the following segments 

3 43 
16 52 

2 33 43 
36 48 8 

30 ° ° 
These operations are described by al-Samaw)al as follows: 

You write this [Q] like the integers on a horizontal line, you start with the degrees which 
you write on the left, the far left, and the other positions extend from them to the right. 
You start with the degrees above which you write down zero or the giver sign -
at muc.tiya [the sign of the perfect position]. You pass over four positions and make a 
sign on_the perfect position13 where 43 is. You pass over four positions and make a sign 
above 8. In the last line you write down the same signs opposite the perfect positions. 
You leave the second, third, and fourth lines empty. 14 

TABLE I 

first 0 0 0 0 

fifth 2 33 43 3 43 36 48 8 16 52 30 

fourth 

third 

second 

first 0 0 0 0 
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Stage 1 

(1) The interval of the root is clearly recognizable, that is 
Xo E [60-1,60°]; so Xo is of the form 

x160-1 + X260-2 + ... + xp60-P + r 

where the Xi are not all nil. 
The problem is therefore to determine XI' X2, ••• , xp in succession. 

To determine XI' al-SamawJal writes 

We start by carefully looking at the first perfect position 15 on the left-hand side which 
is the degree position, we find it empty. We move along to the next perfect position 
which contains (53) [43]. We seek the highest quantity from which we can subtract the 
square-cube of this position and the higher positions16 that follow it, which is 3, (II) 
43; we find 6. We write it down on the higher and lower lines. We look at the table of 
6 in the sexagesimal tables. We multiply the higher by the lower, I mean 6 by 6, and 
we write down the product on the second line, and we multiply the higher by the second, 
and we write down the product on the third, and we multiply the higher by the third 
and we add the product to the fourth. We subtract the product of the higher by the fourth 
from the fifth, we obtain this figure [Table II]:17 

TABLE II 

first 0 6 0 0 

fifth 24 7 3 43 36 48 8 16 52 30 

fourth 21 36 

third 3 36 

second 36 

first 6 0 

In the above passage just quoted and Table II, we observe that to 
determine XI' al-SamawJal does not seek a fraction but an integer whose 
fifth power may be subtracted from the first segment considered earlier 
as a segment of integers and no longer fractions. Similarly, in Table II, 
he writes down the successive powers of XI up to the order n - 1 = 4. 
He thus finds xi = 36, x~ = 3,36, xi = 21,36. 

What does this operation consist of exactly? It is in fact the first 
rule of the method. The mathematician dilates 18 the polynomial by a given 
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positive number. In fact, after dilation of f or ratio a = 60, we have 

fl(x) = r - 605 Q = r - QI 

= r - 2,33,43;3,43,36,48,8,16,52,30 = O. (2) 

To find the highest integer whose fifth power can be subtracted from 
the first segment simply means determining XI such that 

x~ ~ QI < (XI + 1)5 ¢:::> X~ - QI ~ 0 < (XI + 1)5 - QI' (3) 

Fig. We remark that if (x, f(x)) is any point of the graph off. then (ax. f(x)) is the point 
of the correspondent graph of q>a in affinity with ratio a and axis Ox. 

(2) AI-SamawJal then makes this laconic recommendation: "You finish 
calculating the four lines which must be noted down [in the table] once 
the fourteen operations have been completed". 19 This expression thus 
seems to suggest that it was an algorithm frequently used by contem­
porary mathematicians and not his own invention. If he had confined 
himself to this allusive formula, an essential part of our proof would have 
been missing; fortunately, several pages earlier, to solve the inverse 
problem under consideration here, al-SamawJal had set forth these 
operations: to find the fifth power of a number. 

After calculating the successive powers of XI' he gives a table,20 which 
we have left practically unaltered; we have just added the symbolical 
notation x{ and instead of writing 418 for example, as he does, we use 
the notation I, 48. 
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TABLE III 

first second third fourth fifth straight line 

5th XI = 6 Xi = 36 xi = 3,36 xt = 21,36 XI = 2,9,36 6 

4th 2x1 = 12 3Xi = 1,48 4xi = 14,24 5xt = 1,48,0 

3rd 3xI = 18 6Xi = 3,36 lOxi = 36,0 

2nd 4xI = 24 10Xi = 6,0 

1st 5xI = 30 

Before commenting on al-SamawJal's explanation, let us read what 
he writes: 

We add six on the right to six on the left, the left-hand term will be 12. We multiply 6 
on the right by 12 on the left, we have 1,12 which we add to the second term [xtJ; the 
second term [3xfl will be 1,48. We multiply 6 on the right by the second term 1,48, 
and we add the product to the third [x~]; the third [4x~] will be 14,24. We multiply 6 
on the right by the third [4x~] and we add the product to the fourth [xt]; the fourth [5xt] 
will be 1,48 [0]. We thus terminate calculating the fourth line. 

We add 6 on the right to [12] on the left; we have 18. We multiply 6 on the right 
by 18 on the left, we have 1,48 which we add to the second [3xn; the second [6x~] will 
be 3,36. We multiply 6 on the right by 3,36 which is in the second, and we add the product 
to the third, the third will be 36,0. We have thus terminated calculating the third line. 

We add 6 on the right to 18 on the left, we have 24. We multiply 6 on the right by 
24 on the left and we add the product to the second 3,36 and the second will be 6,0. 
We have thus terminated calculating the second line. 

We add 6 on the right to 24 on the left, the left term will be 30. 

AI-SamawJal then turns to the elements of the diagonal and recalls 
that they are 30 = 5.6, 6,0 = 10.62, 36,0 = 10.63, 1,48,0 = 5.64, "as 
is necessary according to the numbers of the square root formula 
5 10 10 5".21 

Two questions arise here: what is this algorithm? Why is al-SamawJal 
interested in the elements of the diagonal? We are going to show that this 
is the second rule of the method. 

Let us start by answering the second question. It is clear that the 
algorithm had been formulated in order to obtain the elements of the 
diagonal. These elements are none other than the coefficients of the 
equation obtained by transformation of (2). 

In fact, after dilating the function and thus obtaining (2), the mathe­
matician reduces the roots of (2) to XI' Let x' = X - XI be the reduced 
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root of XI' then 

and 

X = x' + XI 

5 
heX) = (X' + XI)5 - QI = L qx'Pxi-P - Q2 

p=l 

with Q2 = QI - xi. 

The equation transformed by this reduction becomes 
5 

f2(X) = L qX'xi-p - Q2 = 0 
p=l 

(X being the reduced root) 

hence 

f2(x) = r + 30x4 + 6,0~ + 36,OX2 + 1,48,Ox -
24,7; 3,43,36,48,8,16,52,30. 

(4) 

As for tlJis algorithm it is none other than that of Horner applied to a 
particular case X' - Q = O. To determine it, it is sufficient to write Horner's 
algorithm for the preceding case and then compare it with the one given 
by al-SamawJal. We have in fact: 

Xl = 6 

with 

0 0 0 

Xl = 6 ~ = 36 ~ = 3,36 

2x1 = 12 3~ = 1,48 4~ = 14,24 

3xI = 18 6~ = 3,36 1O~ = 36,0 

4xI = 24 10~ = 6,0 

5xI = 30 

QI = 2,33,43; 3,43,36,48,8,16,52,30 
Q2 = 24,7; 3,43,36,48,8,16,52,30. 

0 -Ql 

x1 = 21,36 -Q2 

5x1 = 1,48,0 

Then, if we compare Horner's table with that of SamawJal, we note 
that they are identical except that in his table al-SamawJal omits: 

1. the first column 
2. the number - Q2' 
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Nevertheless, the absolute value of this number is calculated in the line 
of the number whose fifth root we wish to extract. Lastly, these differ­
ences almost disappear when we remark that here and there, the rule 
for the formation of a triangle is basically the same. If we call (Xi, j 

the elements of this triangle with 1 ;:;;; i ;:;;; n, 1 ;:;;; j ;:;;; n - 1, we have 
(Xi,j = (Xi_l,j + X1(Xi,j_l' 

(3) After dilating the function, finding the first figure of the root 
and transforming the equation by reducing its roots by this figure, he 
gives Table IV which expresses the transformed equation in another 
language.22 

TABLE IV 

first 0 6 0 0 

fifth 24 7 3 43 36 48 8 16 52 30 

fourth 1 48 

third 36 

second 6 

first 30 0 

Stage 2 

(1) AI-SamawJal then recommends "transposing the four lines to obtain 
this table" [Table V].23 

TABLE V 

first 6 0 0 

fifth 24 7 3 43 36 48 8 16 52 30 

fourth 1 48 

third 36 

second 6 

first 30 0 

When we examine this table closely, we noted that al-SamawJal 
prepares the determination of the second figure of the root X2 by repeating 
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the same operations. In this way he reduces the search for X2 to that of 
an integer and no longer a fraction. He therefore dilates f2 by ~ = 60 
to obtain 

5 
f3(X) = L as605-px?-PxP - Q3 = 0 with Q3 = 605Q2 (5) 

p=! 

hence f3(X) = x5 + 30,OX4 + 6,0,OX3 + 36,0,0,OX2 + 1,48,0,0,0,Ox -
24,7,3,43,36,48,8; 16,52,30. 

This is the very expression that is to be found in Table V. 
(2) We seek to determine X2 such that 

f3(X2) 2 0 < iJ(X2 + 1) ¢=I f3(X2) + Q3 2 Q3 < f3(X2 + 1) + Q3. (6) 

Let X2 = 12 be the second figure of the root, we seek to reduce the roots 
of fix) of X2. Let x" = x - X2 be the reduced root of X2, then x = x" + X2 
and 

5 
iJ(x) = L as605-pX~-p(x" + x2! - Q3 = O. (7) 

p=! 

The equation transformed by this reduction with the aid of Horner's 
4 

algorithm becomes f4(X) = L apx5-P - Q4 = 0 with ao = 1; a 1 = 
p=O 

31,0; a2 = 6,24,24,0; a3 = 39,43,16,48,0; a4 = 2,3,8,10,4,48,0; Q4 = 
1,1,44,1,39,40,56; 16,52,30. 

This calculation was in fact completed by al-Samaw)al by means of 
two tables. The first (Table VI)24 aims to calculate 

first 

fifth 

fourth 

third 

second 

first 

Q4 = Q3 - [{[(5x160 + X2)X2 + lOxi602]x2 + lOxf603}x2 
+ 5xt604]X2· 

TABLE VI 

0 6 12 

1 1 44 1 39 40 56 16 52 30 

1 55 26 38 29 45 36 

37 13 12 28 48 

6 6 2 24 

30 12 

0 
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The second table (Table VII) is used to calculate the remaining coeffi­
cients of the equation transformed by Horner's algorithm, with the 
reservations already expressed concerning Table III. 

We can therefore write as before 

30,12 
30,24 
30,36 
30,48 

1 31,0 

6,6,2,24 
6,12,7,12 
6,18,14,24 
6,24,24,0 

TABLE VII 

37,13,12,28,48 
38,27,37,55,12 
39,43,16,48,0 

1,55,26,38,29,45,36 -Q4 
2,3,8,10,4,48,0 

Q3 = 24,7,3,43,36,48,8; 16,52,30 
Q4 = 1,1,44,1,39,40,56; 16,52,30 

(3) When he has dilated the function, found the second figure of 
the root and transformed the equation by reducing its roots by this figure, 
he gives Table vm25 which expresses the transformed equation in another 
language, 

TABLE VIII 

first 0 6 12 0 

fifth 1 1 44 1 39 40 56 16 52 30 

fourth 2 3 8 10 4 48 

third 39 43 16 48 

second 6 24 24 

first 31 0 0 

One should remark though, that to find X2 is difficult if, as is the case 
for Xl' one is satisfied to impose one condition: X2 is the highest integer 
whose fifth power is contained in Q3' AI-SamawJal gives few details 
on this point; he simply recommends verifying the binomial development 
of exponent 5 by this figure, "We then seek [X2]", he writes, "such that 
it verifies the conditions of the square cube, we find 12",26 
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If we want to clarify this expression somewhat, we can affirm that 
X2 verifies (6), a condition equivalent to (3). To be even more precise, 
we shall write 13(Y) = 0 as follows: 

[([(5x j 60 + y)y + lOxi602]y + 10xi603}y + 5x1604]y = Q3' 

We then arrive at an approximation y of X2 if we divide Q3 by 5x1604• 

In this case, it is true, the term obtained may be greater than x2, but 
we can then proceed by successive steps to determine x2• 

The above procedure can be interpreted in two other ways; the 
first one refers to a so to speak empirical observation: knowing that 
5xi604 ;§i Q3' we operate by successive divisions and trial and error to 
determine x2• The second introduces the notion of the derivative when 
the coefficients of l for k > 1 are omitted. Nothing justifies the presence 
of such a notion in the known work of al-SamawJal. We shall see how 
the problem will be posed to a certain extent later. 

Stage 3 

Once the above calculation is completed, we start again to determine 
the third figure of the root, that is x3• Unfortunately, at this point27 the 
manusfript is mutilated and there is a real break in the text. In order to 
reconstruct this passage, therefore we shall turn to other examples 
developed by al-SamawJal including his study of the inverse problem; 
a task all the easier since it concerns precisely the same operations. 
Similarly, al-SamawJal seeks X3 as an integer and not as a fraction. For 
instance, after the dilation of 14 by Y = 60, we have 

.fs(x) = K + 31,0,Ox4 + 6,24,24,0,OX3 + 39,43,16,48,0,0,0,Ox2 
+ 2,3,8,1O,4,48,0,0,0,0,Ox - 1,1,44,1,39,40,56,16,52,30,0,0. 

(8) 

Now let X3 = 30, then 

h(x3) ;§i ° < .fs(x3 + 1) <=> Is(x3) + Qs ;§i Qs < .fs(X3 + 1) + Qs. 

Let x'" = x - X3 be the reduced root, which is equal in fact to ° in the 
case under consideration, we have the transformed equation 

fix) = XS + b j x4 + bzX3 + b3x2 + b4x - Qs = g(x) - Qs = 0, 
g(x) = [{ [(a j 60 + x)x + a2602]x + a3603}x + a4604]x. (9) 
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the expression given by al-SamawJal in the form of a table with the 
following lines 

[(a,60 + x)x + a2602] = 6,24,39,30,15,0, 
{[(a,60 + x)x + a2602]x + a3603} = 39,46,29,7,45,7,30,0, 

{[(a,60 + x)x + a2602]x + a3603}x + a4604 = 2,3,28,3,19,21,52,33,45,0,0, 

i.e. using Homers' algorithm.28 Finally, we find the root 

Xo = ;X,X:cX3 = ;6,12,30. 

Thus the only notable difference between al-Kashi's method and that 
of eleventh and twelfth century mathematicians is neither the order of 
ideas nor the symbolism of the tables: it simply concerns presentation. 
In both expositions the mathematicians handle the same ideas that 
underlie the Ruffini-Horner method, at least for the particular case of 
f(x) = ;XI - Q = O. To solve this numerical equation the number Q is 
divided into segments in order to determine the interval of the positive 
root, then f is dilated or contracted depending on the case, and lastly, 
the roots of the transformed equation whose coefficients are obtained 
by means of Horner's algorithm are reduced. The method is repeated until 
the figures of the root have been used up. Such ideas had already been 
conceived and applied in a fully algebraic way. 

As for the tables, their symbolic function for al-KashI like his pre­
decessors was unquestionable; despite their clumsy symbolism, they made 
the expression of polynomials and operations on polynomials possible. 
Whether it concerns al-KashI or mathematicians from al-Karaji's school, 
they had recourse to the same symbolism, the only exception being 
that what al-KashI had combined in one table, in a more elegant and 
therefore less confused way, his predecessors had represented in a series 
of tables. 

It remains to discover if al-KashI was acquainted with the arithmetical 
works of al-Karaji's school. He certainly made no mention of either 
al-KarajI or al-SamawJal in his Key to Arithmetic, but this is not a decisive 
argument; it was not common practise then, nor is it today, to cite pre­
decessors in mathematical treatises. However, the results we reached here 
and elsewhere, have enabled us to establish that the most important 
propositions in his Key to Arithmetic, the very ones that aroused the 
admiration of historians, are already to be found in al-Karaji's works and 
those of his successors. A philological study will confirm what the history 
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of mathematics has established. Our certainty does not stop here, but 
we will only present it as a conjecture: might not al-KashI have had first­
hand knowledge of al-SamawJal's Treatise of 1172? 

If we pursue our reasoning for the particular case of the Ruffini­
Horner method, we can also establish a more or less direct filiation 
between al-KashI and his predecessors. 

When we presented the previously unknown work of Sharaf aI-DIn 
al-TusI29 for the first time, we drew the attention of historians to one 
of the most significant contributions of Arabic mathematics. On the 
subject we recalled that al-KashI apparently possessed an indirect 
knowledge at least of al-TusI's Treatise on Equations. We then gave a 
detailed exposition and explanation of al-TusI's method for solving 
numerical equations, "affected" equations, or polynomials. The tables 
in al-TusI's treatise omitted by the copyist, which we have laboriously 
reconstructed, are eloquent and even a superficial glance can identify a 
rather old-fashioned form of the Ruffini-Horner method, no longer for 
the particular case of the extraction of the nth root of a number, but 
for a geQeral case. However, for want of undisputed historical proof, 
we have refrained from applying this name to al-TusI's method, esti­
mating we could not take this step lightly. We have advanced the only 
thesis which then seemed founded: al-TusI's method, which is not 
necessarily his own invention, "is in a certain sense more 'modern' 
than that of Viete".3o 

At that point we lacked the means to affirm that it concerns the 
Ruffini-Horner method; we then lacked proof of the extraction of the nth 
root, and moreover, a real theory of decimal fractions necessary, as we 
shall see, for the application of this method in an author who used decimal 
notation himself, was absent. Today the situation is quite different. 
Thanks to the discovery of the Ruffini-Horner method in the writings 
of eleventh and twelfth century mathematicians, applied to the par­
ticular case of the nth root, and again the discovery of the theory of 
decimal fractions in those same mathematicians, we are at present in a 
position to state the problem of the generalization of this method in 
historical and no longer mathematical terms alone, and as a result, 
examine whether it is legitimate to apply the name of Ruffini-Horner 
to al-TusI's method. But to generalize a method is not to extend a set 
of procedures, all things being equal in other respects. 

Now, taken as a the whole, al-TusI's work does not have its place 
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in the line of the algebraist-arithmeticians of al-KarajI's school to which 
it is henceforth permitted to link al-KashT. Indeed, it represents an 
essential contribution to another algebra which aimed to study curves 
by means of equations, thus inaugurating the beginning of algebraic 
geometry. The importance of al-rusT's conception for our problem is 
therefore unquestionable. The generalization of the method undoubt­
edly requires that the mathematician possesses a surer conception of 
the phenomenon dealt with, and consequently justify the various oper­
ations that intervene in this method: in particular he must therefore justify 
dilation and solve the problem already encountered in al-SamawJal's 
and al-KashT's expositions, and complicated by the transition to poly­
nomial equations: the determination of the different figures of the roots 
starting with the second figure. Noncommittal as to how to find these 
figures, al-SamawJal and al-KashI were still able to depend on successful 
trial and error. In this case, to arrive at a reasonably quick result, less 
empirical procedures are required. We shall confine ourself to one 
example from al-rusT31 to illustrate the above affirmation, and show 
that the Ruffini-Horner method existed in a relatively general form before 
al-KashI. Let 

f(x) = g(x) - N = 0 

with 

g(x) = xl + a l.x2 + a2x, 
N = nolOm + nl lOm -I + ... + nm ; 

first determine the perfect positions of N, i.e. the positions of the form 
np with n = 3, p E 1.. This means determining the segments of three 
figures that compose N. Let qo be the highest integer of the form np 
such that 

o ;;a % ;;a m. 

Let Po be such that 

Let kl and k2 be decimal orders of al and a2 respectively and [k2/2] 
the integer part of k2/2. 
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AI-TusT distinguishes three cases: 

(1) Po> kl and Po> [~ ] 

(2) Po < [~ ] and kl < [~] 

(3) Po < kl and [~ ] < k1• 

We shall analyze the first case. 

EXAMPLE. f(x) = g(x) - N = x3 + 1~ + 102x - 34345395 = O. Let Xo 

be the positive root sought, we recognize that 

Xo E [102, 103[ 

therefore 

Xo = a 1102 + ~1O + a3• 

(1) We first determine the perfect positions, i.e. from right to left, 
5,5,4. 
(2) We contrace2 f by ~l = 10-2; which is equivalent to setting 

x = 102x'; 

we obtain 

f(102x') = (l02X')3 + 12(102X')2 + 102(102x') - N = 0 

which is equivalent to 

flex') = X'3 + 0,12x'2 + O,OlO2x' - N] = g](x') - N] = 0 

with N] = lO-6N = 34,345395. We then have x; the highest integer whose 
cube is contained in N I • Such that 

x; = a l = 3. 

Therefore, if a l is the first figure of the root, we have 

XI = 102x; = 102a l = 300. 

(3) We reduce the roots of fl(x') of x; = 3 by an old-fashioned form 
of Horner's algorithm. We thus obtain the coefficients of the transformed 
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, , 
y = x - Xl 

N2 = NI - gl(x;)Ny) 
= y3 + (3x; + 0,12)l + (3X;2 + 2 x 0,12x; + 0,0102)y 

- [34,345395 - (X;3 + 0,12x;2 + 0,0102x;)] 
= l + 9,12l + 27,7302y - 6,234795. 
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It will be noted that for the calculation of the coefficients of the trans­
formed equation, aI-lusT only effects the coefficient of y and N2• 

(4) He then expands 12 by ~2 = 10, which is equivalent to posing 
y = 1 O-ly'. He obtains 

12(10-ly') = 0; 

which is equivalent to 

liy') = y'3 + 91,2y'2 + 2773,02y' - 6234,795 = g3(y') - N3 = O. 

One remarks that at the end of the preceding step aI-lusT was preparing 
the search for the second figure of the root, or more precisely ~. But 
if in the first step the real root sought was of the form <X1102 + ~ 10 + 
<X3, after contraction, extraction of the first figure, and reduction, the 
reduced root to be found is 

12(y) = 0 

it is therefore of the form <x21O-1 + <x31O-2, which justifies dilation by 
~2 = 10 to find <x2• 

It is precisely at this point and without further explanation that he finds 
<X2 = 2. If he does not explicitly indicate the method for determining 
<x2, the context nevertheless suggests a highly probable answer. In fact, 
aI-lusT relates the determination of this figure in a direct way to a few 
operations and proceeds, moreover, in the same way throughout his 
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Treatise. Furthermore, everything implies that it concerns a method 
already known and applied. 

Firstly, one remarks that to determine the second figure of the root, 
as well as the following figures, aI-lUsT no longer seeks the highest 
cube contained in N3• AI-lUsT was perfectly aware that this method was 
no longer valid since in this case y' determines the decimal order of 
the root. On the other hand, the determination of the second figure is 
directly linked to the calculation of N3 and 

(3X~2 + 2 x 0,12x~ + 0,0102)102• 

In fact aI-lUsT proceeds here as for the calculation of coefficients by 
means of Horner's triangle and selects N2 and the coefficient of y, then 
N3 and the coefficient of y'. At precisely this stage in his calculation 
he gives the value of <X2• Everything implies therefore that aI-lUsT 
determines an approached value of <X2 of the form 

N3 
102g~(x~) 

which is equivalent to 

-I N2 
<x210 = -,--( ') 

gl XI 

which is the same as omitting the terms of an order higher than one in 
g3(y'). The method followed to determine the third figure of the root 
confirms this interpretation. 

Although aI-lUsT uses a "derivative" procedure in search of maxima 
in the same Treatise, in this instance the "derivative" only functions 
as an algebraic expression corresponding to a coefficient of y', and 
therefore necessarily a higher coefficient of the transformed equation. 
If the "derivative" in this case makes it possible to obtain an approached 
value of the second figure, it is by reason of its algebraic properties 
and in no way by virtue of its analytical meaning. This is no more than 
a procedure for the derivation of formal expressions. The same case 
occurs moreover in the "divisor" of the so-called Viete's method.33 

(5) We reduce the roots ofiJ(y') of Clz = x~ = 2 and by means of Horner's 
algorithm we obtain 

flz) = f3(Z + x;) = glz) - N4 = 0 



NUMERICAL ANALYSIS 

with 

hence 

f4(z) = Z3 + 97,2z2 + 3149,82z - 315,955 = o. 
(6) We dilate t. by ~3 = 10. 
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(7) We recommence for the third figure of the root, which is found equal 
to 1. 

In the case where 

as for example 

x3 + 6x2 + 3000000x = 996694407 

and in the case where 

as for example 

x3 + 30000r + 20x = 3124315791. 

Al-rusT first divides by the coefficient of x and x2 respectively; this 
explains moreover the search for the highest cube contained in N. 

It must then be noted that al-rusY justifies the operations of expan­
sion, contraction and division in terms which Viete will use later for 
the same type of operation. In substance, it is a comparison between 
the various decimal orders that constitute g(x) according to the various 
cases on the one hand, and the various segments of N on the other. 
From ai-rusT to Viete the analogy between the language used and 
operations carried out is more than striking. 

Lastly, note that aI-rusT not only intends to determine the figure or 
the root, but also wants to give himself the means to verify the figure 
found at each stage. At each stage of the operation he must therefore 
compare the decimal order of the root sought with the decimal orders 
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of the coefficients of the equation which leads to the ambiguity visible 
in the tabular notation. 34 Each term may in fact be read twice at 
least, according to the position chosen as that of the units: once before 
dilation or contraction, and once again after these operations have been 
carried out. 

It is therefore established that if al-KarajI's school was familiar with 
the Ruffini-Horner method for the particular case examined, this had 
already been generalized in the thirteenth century, i.e. two centuries 
before al-KashI by a mathematician whose work he knew of at least 
indirectly. 

One final remark, if al-rusI only deals with third-degree equations 
- the subject of his Treatise - the application of his method to the case 
of polynomial equations of any degree does not require, as we have 
shown elsewhere,35 any other notion unknown to the author. The func­
tionallanguage we have employed to present aI-rusT's method, as well 
as those of al-SamawJal and al-KashI should not of course mislead; the 
notion of function as such does not intervene; it is simply a conceptual 
short-cut which dispenses with algebraic expressions. Therefore, in our 
notation, f(x) merely represents a polynomial. 

2. The Approximation of Irrational Roots of an Integer 

If we leave the history of the so-called Ruffini-Horner method to tackle 
the problem of the approximation of the irrational root of an integer, 
we encounter the same situation, identical names and similar commen­
taries, for example, the general formula attributed to al-KashI and 
ascribed by Luckey to a thirteenth-century Chinese origin. This myth was 
however somewhat shaken by the discovery of the same formula in the 
work of a mathematician about one and a half centuries before al-KashI: 
Na~fr aI-DIn ai-rusT. Once again we shall show that the rule and its 
formulation go back in actual fact to al-KarajI's school, therefore to 
the eleventh and twelfth centuries. 

After his exposition of the Ruffini-Horner method, al-SamawJal 
devotes a chapter to the problem of the approximation of the nth positive 
root of an integer, or more exactly, its fractional part. 

If you extract the side of a square or a cube or anyone of the other powers [mariitibl, 
if you know the integer side, I mean the side of the cube, or the square or one of the 
other powers, the closest to the one whose side is sought, and if a remainder is left that 
shows its side is irrational, if you want to extract fractions approaching the closest its 
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integer from this remainder, you take the numbers [which] the law [namely the table of 
coefficients] gives you for this power, and you multiply each one by the number it defines; 
you add them all up, and you add one to the total in each case: what you obtain is the 
denominator of the remaining parts.36 . 

One can rigorously affirm that here al-SamawJal states a general rule 
for approaching the non-integer part of the rational root of an integer 
by fractions. Let us briefly retrace the method al-SamawJal proposes 
for this rule. To solve the numerical equation 

X' = N; N E ~. 

He first finds the highest integer Xo such that x'Q ~ N. Two cases exist: 
(1) X'o = N ¢:> Xo is the exact root found; we have seen that al-SamawJal 
possesses a tested method for obtaining this result when possible. 
(2) x"o < N ¢:> N l/" is irrational. In this case, he states the first 
approximation as 

i.e. 

N - X'o 
x' = Xo + -[-nL--""'I-(-~-)-x-3--;:"k-]-+-1 

k=1 

I N-x'Q 
x = Xo + ( 1)".JI 

Xo + - ""0 

(1) 

(2) 

In the case of the cubic root, we obtain what Arab mathematicians 
called "conventional approximation".37 

AI-SamawJal then gives several examples to illustrate the applica­
tion of this rule to different cases: square roots, cubic roots, roots of 
higher powers. 38 For example, he solves ~ = 250 and writes: 

Similarly, if we extract the side of the square-cube 250, we obtain :3 and 7 remains. 
And we find the numbers of the law of the square-cube 5 iO 10 5. We multiply 3, I 
mean the integer side by the first; and the square of three by the second; and the cube 
of three by the third; and the square-square of three by the fourth; and we add one to 
the total. We obtain 781, which is the denominator of the remaining parts. The side will 
be three units plus seven parts of 781 which is the side sought. And according to this 
rule [for the other powers].39 

This approximation by default is similar in nature to the one 
expounded by al-SamawJal's Arab predecessors, but much more general. 
While arithmeticians before al-KarajI's school (e.g. al-NasawI) limited 
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the application of this method to powers equal to or less than 3, here 
the rule is extended to a power of any degree as will be found later in 
al-KashI. AI-SamawJal gives us no insight as to how he arrived at the 
above formula, but if we consider mathematical knowledge of the period, 
we are in a position to advance two hypotheses: we have here perhaps 
nothing more than a straightforward application of the binomial formula; 
or, a second hypothesis, we are perhaps confronted with the generalization 
of the rule of the false position - regula falsi. 

In the first case suppose that Xo < N l/n < Xo + 1 and set N lin = Xo + r; 
we have 

hence 

N = (xo + rt => N = i (~) xg-kr" 
k=O 

N -xC; 
r = --------"------

n-l ( n) n-2 -1 nxo + 2 Xo r+ ... +~ 

where r is equivalent to the fractional part of (2) and consequently of (1). 
In the second case, set 

Set 

X2 = (xo + l)n and Y2 = Xo + 1. 

Finally, let x = N = ~o + r, and apply the formula of linear interpola­
tion expressed in words by contemporary mathematicians. We have 

Y - Yl _ X - Xl _ (Y2 - Yl)(X - Xl) --- - --- => Y - Yl + ....::....:=--..:....:.;'-'--~ 
Y2 - Yl X 2 - Xl X 2 - Xl 

hence 

_ N-~o 
Y - Xo + ( l)n ...II Xo + - .... 0 

hence formula (2), and consequently formula (1). 
In both cases, the approach followed supposes resorting to methods 

known and used by al-KarajI - the binomial formula, the table of 
coefficients, the rule of the false position - as we have seen. On the other 
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hand, methods of linear interpolation were commonly applied by 
eleventh-century astronomers, if not earlier, as al-BlriinI (Kazim, 1951, 
pp. 161-170) shows. However, neither the presence of such mathemat­
ical methods, nor a reading of al-Samaw)al himself, authorizes us to credit 
him with the above rule of approximation. In his Treatise on Algebra -
(al-Biihir) - as in other works, al-Samaw)al explicitly claims his own 
inventions (al-Samaw)al, ed., 1972, p. 9; Rosenthal, 1950, pp. 560-564), 
but in the last folio of his Treatise on Arithmetic, where he writes that 
he introduced "inventions for which as far as we know, no one has 
preceded us", nowhere does he designate one. We shall adopt the same 
caution for the Ruffini-Horner method and attribute the formula and 
exposition of the method of approximation to al-KarajI's school as well. 

3. Methods and Procedures for Improving Approximation 

The above conclusion is also applicable to a set of procedures proposed 
by al-Samaw)al who aims to improve the approximation of the irra­
tional root of an integer. The first one at least, about which we have 
very little historical information, is particularly significant: al-Samaw)al 
explicitly seeks to construct a sequence of rational numbers that converge 
towards a given algebraic real number. Moreover, as the procedure he 
seeks ought to allow him to derive the various approximations in a 
recursive way, he opts for a deliberately iterative method. But here, and 
this will still hold true in the seventeenth-century, the mathematician 
disregards theoretical problems of existence and even ignores all 
theoretical justification. Such considerations are recent; like seventeenth­
century mathematicians studying numerical methods, al-Samaw)al only 
wants to obtain verifiable results. But before commenting, let us quote 
al-Samaw)al: 

If you extract the irrational root of the number [ ... J* and if you want to equalize it, 
ta'dfl [improve the approximation] by this calculation, multiply the side [ ... ]* by itself, 
and find the difference, al-tafawut, between the product and the quantity whose root 
you wish to approach. Then divide this error by double the integer root; add the quotient 
of the division to the side if the error is negative, and subtract it from the side if the 
error is positive. You will thus find the side equalized [improvedJ. It is always closer to 
the truth than what precedes it. 

Then multiply this equalized side by itself and know the quantity of the difference, 

* Text mutilated. 
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which is the second error. It must be smaller than the preceding error. Divide this error 
by the double of the integer part of the side, the result is the third side. It must be closer 
to the truth than the second side. If you are satisfied with it, so much the better, if not 
you raise it to the square, and the [difference] that you manage to find between its square 
and the number whose root is sought must be smaller than the preceding error. You 
divide the difference by double the integer part of the side and you add the quotient to 
the side obtained earlier, I mean you add it* or subtract it according to whether the error 
is added or subtracted, you thus obtain the side [ ... ]*. 

AI-SamawJal concludes: "We thus obtain rational quantities whose 
number is infinite, and each one is closer than the preceding one to the 
quantity we seek to approach".40 

It must be noted that al-SamawJal does not limit the usage of this 
method to the particular case n = 2, n = 3, but expounds it for general 
cases. He then writes, you must then divide the difference by double 
the (n - l)th power of the integer part of the root, to which you add 
the sum of lower powers to (n - (n - 1». In other words, al-SamawJal 
finds the nth approached root for integer x. 

Let a be an integer such that x"n - 1 < a ~ xlfn. 
Let Xo be a rational such that x~/n ~ x"n and a ~ x~/n. 
Set 

x = (a + ay, 
Xo = (a + ~)n, 

a ~ 0, 
o ~ ~ ~ a. 

The approximation of order 1 is given by the formula 

x - Xo 
f(x) = f(xo) + ------'n-~2-

2an- 1 + 2. aP 

p=l 

with 
I 

f(u) = un . 

By iteration, the approximation of order k + 1 (k = 1, 2 ... ) is written 

(x - xk) 
f(x) = f(Xk) + -....:....-.-n~-2,--

2an- 1 + 2. aP 

p=l 

AI-SamawJal gives two numerical examples;41 we have chosen to 
present the easier of the two 

n = 2, x = 5, 

* Text mutilated. 

121 
Xo = 25 ' a = 2. 
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For the first approximation, we have 

_ r £ (x - xo) _ r;: 11 1 
"'IX = Xo + 2a =>"'15 = 5" + 25 . 

For the second approximation we have 

..rx = -rx; + (x - Xl) 

2a 

with 

[ (x - x ) ] 2 [ 11 1] 2 
Xl = f(xo) + 2a 0 = 5 + 25 
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He next seeks the third approximation in the same way. Note that for n 
= 2, the expression 

is close to 

f(x) = f(xk) + _....:..(x_----:xk"'=")_ 
n-2 

2an- 1 + L aP 

p=l 

which is the form of the regula falsi. For n > 2 the expression 

f(xk) - f(Xk- l ) 

X k - X k_ l 

which is equivalent to lI(nan- 1 + R(a)) is replaced, i.e. corrected by a 
weight of greater magnitude which is 

1 
n-2 

2an- 1 + L aP 

p=l 

That this method was deduced from the regulafalsi is highly probable; 
al-SamawJal had already applied this rule in al-Biihir (ed., 1972, pp. 66ff., 
Fr. intr.), just like most other mathematicians of al-KarajI's school. 
The choice of the last "weight" was motivated by a theoretically 
unfounded generalization of the method. Comparatively simpler than 
the traditional method If(x) = f(xk ) + (x - xk )/2f(xk )], though more 
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longwinded in the case of the square root, it proves to be unsound for 
the nth root. 42 

Apart from the iterative method encountered here for the first time, 
al-SamawJal's Treatise proposes other methods for improving approxi­
mation for the particular case of the square and cubic roots which were, 
on the other hand, already known to arithmeticians before al-KarajI's 
school, for example, al-UqlIdisI (ed., 1973, pp. 416ff.), AbU Man~Ur 
al-Baghdadt3 and many others. Their general formulation, attributed to 
al-KashI until now, dates back in fact to the twelfth-century. They include 
the following rules: 44 

VX = 'V 10"kxllOk k = 1,2, ... 

VX = ~/a a positive integer 

VX = 'V (an X bn X •.. X r)x/a X b X ••. X l a, b, ... , l positive integers. 

II. THE INVENTION OF DECIMAL FRACTIONS 

Before writing the history of decimal fractions, we do need to reiterate 
that it is one thing to use them on random occasions for the computa­
tion of common fractions and another to provide a conceptual and 
articulated exposition of the decimal representation of a fraction. Only 
in the case of decimal fractions can one distinguish a clear perception 
of the meaning of the notation for the mathematician, and affirm that 
he chose these fractions for themselves, deliberately opting for this 
representation. By failing to observe this elementary, even obvious rule, 
some historians working on the problem have been tempted to find an 
invention, though dated and localized, present everywhere; we shall 
simply quote Sarton's extensive classical study (1935, pp. 151-244) 
and Saidan's more recent article (1966, p. 489). 

Whether we consider Arabic mathematics in the tenth and twelfth 
centuries or limit ourselves to al-SamawJal's work, setting aside his 
Treatise of 1172 for the time being, in both cases one is surprised to 
find a usage of decimal fractions that implies no recognition of these 
fractions as such: one only needs to consider all the arithmetic operations 
carried out on common fractions whose denominator is a power of ten. 
It would be pointless here to accumulate such facts; a specific example, 
evidence in the strongest sense of the word, would be much more 
eloquent and allow us to raise a problem usually connected with the birth 
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of decimal fractions. We shall see that several names, important ones 
at that, are associated with this problem; for instance, al-SamawJal 
himself in the texts preceding his theoretical exposition of decimal 
fractions. 

From the tenth century, if not before, in numerous Arabic treatises 
on arithmetic, one encounters a rule for approaching the irrational, square 
and cubic roots; a rule then called the "rule of zeros". The general 
formulation of this rule is to be found in al-SamawJal's Treatise 

I 

1. (a·lOn~n 
(a) n = 10k for k = 1, 2, ... 

Now the approximation obtained according to this rule necessarily 
includes a decimal fraction. This observation led a historian such as 
Sarton (1935, pp. 168ff.) to attempt to integrate into the history of decimal 
fractions authors who proceeded by applying this rule. There is no basis 
for affirming that by following this procedure the mathematician has 
grasped and understood the decimal representation of the fraction; 
moreover, he would on occasion transform it directly into a sex ages­
imal fraction. For example, in a Treatise on Arithmetic composed in 
952, to which we shall return later, al-UqlIdisI (ed., 1973, pp. 133-134) 
states the "'rule of zeros" for the particular cases of square and cubic roots, 
applies it to the approximation of the square root of 2, only to trans­
form the result straight away into a sexagesimal fraction. The same 
approach for extracting the square root of 5 is to be found in another 
treatise on arithmetic composed by aI-BaghdadI (d. 1037) and entitled 
al-Takmila fi cilm al-~isab. Lastly, this method was also followed by 
an eleventh-century mathematician, al-NasawI in his treatise al-Muqnic.45 

We could multiply examples, all of which would support this idea; 
whereas the mathematician immediately converts them into sex ages­
imal fractions and does not show sufficient interest in identifying decimal 
fractions. IOf even greater significance are al-SamawJal's writings before 
his Treatise of 1172. In a treatise entitled al- Tab~ira fi cilm al-~isab, 
he recalls the "rule of zeros" and applies it to the extraction of the 
square root of 1020. He first obtains 

31 plus nine hundred and thirty-seven parts of a thousand, you simplify it [ ... J and the 
answer will be 31 plus a half, plus two fifths, plus a fifth of a tenth, plus a tenth of a 
tenth, plus a half of a tenth of a tenth, plus a fifth of a tenth of a tenth, which is the 
square root of one thousand and twenty, whose difference with the truth is not percep­
tible.46 
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Our thesis is thus corroborated by these different examples: apparently 
none of these authors had effectively conceived the decimal represen­
tation of fractions. Nowhere is there yet a hint of the type of 
representation which will arise later and which was already present in 
al-SamawJal's Treatise of 1172. Until then, one only encounters, at best, 
an intuition still submerged in empirical practice. 

1. Al-Karajf's School: AI-SamawJal 

In his Treatise of 1172 one can note a sporadic usage47 of decimal frac­
tions; al-SamawJal's theoretical exposition only comes at the end of his 
work; to be more precise, it follows an exposition of methods and 
problems of approximation described earlier. And as a result the final 
chapter is therefore, as we remarked, a direct development of the 
preceding chapters; one of al-SamawJal's aims is to improve methods 
of approximation. This is therefore the context in which the exposition 
of decimal fractions intervenes and enables us to clarify its function in 
the overall plan of the work. AI-SamawJal's real aim is to unify and 
generalize, as the title itself of the chapter on decimal fractions confirms: 
"On the place of a unique principle whereby one may determine all 
partition operations (al-ta!rfq), that is, division, the extraction of square 
roots, the extraction of a side for all powers and the correction of all 
fractions that appear in the operations, indefinitely".48 By the expres­
sion the "indefinite correction of fractions", al-SamawJal means to give 
to the latter a form so that they can be calculated like integers, and 
from then on, it is possible to correct the approximation of different 
operations indefinitely. 

The title is a program in itself and its clarity makes commentary super­
fluous. Before giving its exposition, let us simply recall that the theory 
of decimal fractions was presented as a technical solution to the problem 
of approximation, theoretical and technical at the same time. 

"Given that", writes al-SamawJal, 

proportional places, (mariitib), starting with the place of the units [lOo), follow one another 
indefinitely according to the tenth proportion, we therefore suppose that on the other 
side [of lOo) the place of the parts [of ten follow one another) according to the same 
proportion, and the place of units [lOo) lies half-way between the place of the integers 
whose units are transferred in the same way indefinitely, and the place of indefinitely 
divisible parts. 

We call the place that follows the place of units [10°) the place of parts of tenths, 
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and the one that follows this one the part of hundreds, and the one that which follows 
this one the part thousands and so on. 

If, when calculating division, or the square root, or the side of a cube, or the square­
square, or when, in another chapter on partition (a[-ta!rfq) , we reach the place of the 
units [10°], we do not stop calculating but transfer the lines [of the table] that should be 
transferred in the figure [table] below the row of the parts of the tenths for this place 
and what we obtain is a part of 10. If we continue our calculations, we transfer the 
[lines of the table] underneath the place of parts of tenths and under this place we obtain 
parts of hundreds. And here is the figure of the indicated places.49 

parts of tens of thousands of thousands of thousands of thousands 0 

parts of thousands of thousands of thousands of thousands 0 '<t 

parts of hundreds of thousands of thousands of thousands 0 

parts of tens of thousands of thousands of thousands 0 

parts of thousands of thousands of thousands 0 "" 
parts of hundreds of thousands of thousands 0 

parts of tens of thousands of thousands 0 

parts of thousands of thousands 0 N 

parts of hundreds of thousands 0 

parts of tens of thousands 0 

parts of thousands 0 

parts of hundreds 0 

parts of tens 0 

unit place 0 0 

place of tens 0 

place of hundreds 0 

place of thousands 0 

place of tens of thousands 0 

place of hundreds of thousands 0 

place of thousands of thousands 0 N 

place of tens of thousands of thousands 0 

place of hundreds of thousands of thousands 0 
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place of thousands of thousands of thousands o 
place of tens of thousands of thousands of thousands o 
place of hundreds of thousands of thousands of thousands o 
place of thousands of thousands of thousands of thousands o 
place of tens of thousands of thousands of thousands of thousands 0 

It may be observed that 
(1) AI-Samaw)al starts by establishing the ratio: 1: 10 = 10: 100 = 

100:1000, and so on to infinity. 
(2) As his first sentence and table indicate, he sets 10° = 1. The last 

line of the table shows that he explicitly writes the zero sign under the 
unit place. 

(3) His objective is to extend the notion of the power of a quantity 
to its inverse. More precisely, having supposed 10° = 1, he sets 

1 1 lId . f· . 
: 10 = 10: 100' an so on to III lllity. 

(4) Lastly, he suggests that here the calculation is the same for alge­
braic quantities in general: the examples he gives later amply confirm 
this suggestion. To sum up, we shall say once 10° = 1 is set, it involves 

placing two sequences 10, 102, ... ; 1~' 1~2' ... , on either side of 

10°, and applying the general rules obtained by the algebraic calcula­
tion of powers. From now on any real number therefore admits a limited 
or unlimited decimal representation. 

Through these results, al-Samaw)al achieves his project of general­
ization and formulates a unique principle enabling the indefinite 
correction of approximations. This theory can be explained, in this 
instance at least, by an extension of the concept of the power of an 
algebraic quantity to its inverse. 

We have described elsewhere that the extension of this concept of 
algebraic power was the work of al-KarajI's school, and in particular, 
al-Samaw)al himself. These mathematicians found in it an instrument that 
enabled them to apply elementary arithmetic to polynomials and so 
achieve al-KarajI's project described above. But the greatest difficulty 
they had to overcome in order to achieve this extension was to give an 
explicit formulation of zero power: XO = 1, x-j:. 0, for which al-Samaw)al 
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himself gives a solution. Once this obstacle had been overcome, he was 
able to state the equivalent rule to 

X"X' = X"+n m, n E 7L. 

Thanks to tabular symbolism, al-SamawJal places the two sequences 

of x, x2, ••• ; 1,~, ... , on either side of xo; and his calculation of 
x x 

xn ~, n, n' E 7L, consists of counting from row n, n' rows in the 
x 

direction of the unit. When it concerns the product X'X", he counts n' 
rows again, but in the opposite direction to the unit. The rule amounts 

to dealing with powers of the form~, like x-n' and adding powers 
x 

algebraically. Thus, after having drawn up the following table,So he 
writes: 

If two powers lie on either side of the unit, from one of them we count in the direction 
of the unit, the number of elements of the table that separates the other power from the 
unit and the number is on the side of the unit. If two powers are on the same side of 
the unit, we count in the opposite direction to the unit. 51 

It is this conception that made possible the application of elemen­
tary arithmetical operations to algebraic expressions of the form 

n 
I(x) = L a~k m, n E 7L+, 

k=-m 

and to polynomials in particular. 
In turn, all these results make it possible to elaborate the theory of 

decimal fractions. With al-KarajI's suggestion and the extensions he 
obtained, al-SamawJal only needs to substitute x in the last table for 
10 - which is what he did to achieve the table of decimal fractions; 
then adopt a notation previously used for the case of polynomials in 
general to obtain the decimal representation of any algebraic number; and 
lastly, apply the operations elaborated earlier for polynomials in the 
widest sense to these representations so as to obtain at the same time 
the rules for calculating fractions. 

Everything concurs in testifying that the invention of this algebra 
was necessary for a truly general expression of decimal fractions. Once 
again it is seen that the road to scieptific discovery is neither the shortest 
nor the most direct. 
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Having reached this stage in his exposition of decimal fractions, 
al-Samaw)al was quite naturally confronted with the famous problem 
of notation, and consequently induced to deal with it indirectly at least. 
The solution of the problem, as we just remarked, was already given at 
the same time as decimal fractions. However, this notation had to fulfil 
two requirements whether expressed in words or symbolically. The first 
one, theoretical, was partially fulfilled by expressing polynomials by 
means of tables: the limited or unlimited representation of any real 
number then known had to be possible; the second, of a practical nature, 
concerns the possibility of pronouncing such a representation. Satisfying 
the latter condition is dependent on the integration of the body of decimal 
fractions into a practice other than purely bookish. 

The significance of the problem of notation that faced al-SamawJal 
is clear if we place it in its context, i.e. the algebra of the period as a 
whole. Everything seems to imply that, to be operative, this notation 
of decimal fractions had been chosen according to a notational system 
used in algebra. While not pretending here, of course, to study alge­
braic notation at the time of al-SamawJal, let us simply recall that algebra 
was essentially verbal, but the absence of a symbolical notation was 
partially compensated by what we described earlier as the "tabular 
method". Its principle is simple: we write down verbally the various 
powers X', n E 7L on the first line. We write the coefficients on a second 
line below the first, and for each operation, we stipulate a set of rules 
for adding supplementary lines and transferring them. 

If this method - tabular symbolism - was still rather cumbersome, 
it nevertheless enabled the execution of all algebraic operations on 
polynomials in general. It is undoubtedly due to its relative effective­
ness that one must attribute the permanence of this method of notation 
by mathematicians several centuries later, such as Viete and Wallis. 

In such a context the problem of the notation of decimal fractions 
had therefore to be posed in the tradition of the tabular method. Moreover, 
al-SamawJal gives examples that tend to confirm our analysis; he applies 
the same operations he effected on integers written as decimals to decimal 
fractions without justification. 

For instance, the first example given is the simple division of 210 
by 13. AI-SamawJal emphasizes in the first place that this division may 
be continued as far as one wants; to recall his own words: if we continue 
the operation "to the places we want, and if we restrict ourselves to 
five places",52 we obtain the result written as follows: 
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16 5 3 8 4 
integers part of parts of parts of parts of parts of 

ten a hundred a thousand ten thousand one hundred thousand 

As we can see this notation is based on the following principle: to 
separate the integer part and represent the fractional part according to 
al-SamawJal's technique also used in his Algebra for representing a 
polynomial. But if this notation was effective for the calculation of tables, 
it was difficult to pronounce and consequently restricted in practical 
scope. 

Similarly, in other examples, al-SamawJal modified it in the sense 
just indicated: these corrections emphasize the succession of places rather 
than terms: parts of ten, parts of a hundred, parts of a thousand, etc. 
and make pronunciation possible. The improvement is clear in his second 
example, the extraction of the square root of 10, where he writes down 
the result as follows: 53 

tens units tenths tenths tenths tenths tenths tenths 
of a tenth of a tenth of a tenth of a tenth of a tenth 

of a tenth of a tenth of a tenth of a tenth 
of a tenth of a tenth of a tenth 

of a tenth of a tenth 
of a tenth 

3 6 2 2 7 7 

In fact, although the notational principle here is fundamentally iden­
tical to the previous one, al-SamawJal clearly wants to bring out the 
succession of places as well as their rank, by repeating the same term 
as often as necessary. Therefore, instead of using the clumsy expres­
sion "parts of ten, parts of a hundred, parts of a thousand, etc." The 
equivalent can be written: 

10 10° 

3 

1 
10 

1 6 2 2 7 7 

The nth place is thus indicated by the repetition of the term n times, 
the "tenth" - cushr. 

This unification assumes an importance that may elude a modern 
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reader; it does in fact lie at the origin of a proper noun which was used 
later to name these fractions, cushria, or aCshiiria, i.e. tenths. That said, 
despite this improvement in notation, the difficulty remains if one wants 
to pronounce such a number. To get round this difficulty, al-SamawJal 
was inspired by a notation then used for ordinary fractions and relates 
the fractional part to the same denominator; he thus arrives at the fol­
lowing notation, 

1 
1 6 2 
000 

3 
277 
000 

which reads: 3 units plus 162277 of 1.000.000, or, as he writes: 

If we want all the fractions obtained to have the same denominator, we transfer the 
place of the units as well as [the places] that follow it - tenths, hundreds and the other 
[places] of integers to a higher line and underneath the other places [of the fraction]. 
We write down zeros, and after the zeros, one.54 

Thanks to this notation and while respecting the same principle of 
separation between the integer and fractional parts, one manages to 
represent a pronounceable number. 

To conclude his exposition, al-SamawJal briefly recalls the initial 
purpose of the theory of decimal fractions: to enable the application of 
various operations - division, the extraction of nth root of fractions, in 
the same way as for integers ("as we operate on integers") and conse­
quently make the indefinite correction of approximations more obvious 
and easier. 

This reminder is followed by a second conclusion, where al-SamawJal 
vigorously underlines the aim of the entire exposition: everything seems 
to imply that we are confronted with the grasp of an essential idea though, 
as will be understood later, as yet undemonstrated: the nth non-decimal 
root of any positive number is the limit of an ascending sequence (an)n~l 

of decimal values, an being an approached value l~n to the nearest 

decimal point. 
"And thus", al-SamawJal concludes, "we operate to determine the side 

of a cube, of a square-square, a square-cube and other [powers] this 
method enables us to understand fully the exact operations for parti­
tion and obtain an infinite number of answers, each one being more 
precise and closer to the truth than the preceding one". 55 
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We have therefore seen with al-Samaw)al that the theory of decimal 
fractions was elaborated within the context of the problem of the extrac­
tion of the nth root of a number and problems of approximation. It 
remains for us to return to the forerunners of al-KarajI's school in order 
to show that it was effectively with mathematicians from this school 
that the first exposition of this theory is encountered. 

2. The Case of al-Uqifdisf (952) 

The only known forerunner is al-UqlIdisI, to whom historians quite 
recently thought it possible to grant a privileged status in the history 
of decimal fractions. Was the discovery of decimal fractions not attrib­
uted to him? Has it not been affirmed that he used them "as such" and 
"appreciated the importance of the decimal sign,,?56 Entrenched in this 
conviction, some historians have gone one step further and without further 
examination have declared they see al-UqlIdisI's Treatise as "the 
explanation and application of decimal fractions". 

It is appropriate to examine what induces these historians, though 
undoubtedly well informed, to arrive at such a reading, and in partic­
ular, to ask ourselves if this abusive historical recurrence should not be 
ascribed to the ambiguity of the text. On several occasions in his Treatise, 
al-UqlIdisI undoubtedly poses specific problems which he solves by 
resorting to decimal fractions. We have already had the opportunity to 
set forth the "rule of zeros" that permits the solution of these problems, 
the extraction of the square and cubic root. 

The other two problems are as follows: 
(1) To increase - or decrease - a given number by its tenth, suc­

cessively, as often as one wants. 
(2) To halve an odd number a certain number of times, as well as 

the inverse operation. 
Apart from these specific problems, nothing in al-UqlIdisI's Treatise 

suggests a recourse to decimal fractions; it is moreover indisputable 
that he gave no exposition comparable to that of al-Samaw)al. 

Given these conditions, one can ask in what way does al-UqlIdisI's 
contribution differ from those we thought unable to integrate into the 
history of decimal fractions? In other words, was al-UqlIdisI acquainted 
with decimal fractions other than in an intuitive or accidental way? To 
answer this well-defined question, let us return to one of his most 
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important works. The first deals with raising a number of its tenth, five 
times. He writes (ed., 1973, p. 150): 

... we want to raise a number by its tenth five times. We write down this number as usual; 
we write it again below moved one place to the right; we therefore know its tenth, which 
we add to it. So we have added its tenth [to this number]. We put the resulting fraction 
in front of [this number] and we move it to the unit place after marking it [with the 
sign '] thus. We add its tenth and so on five times. 

He continues (ed., 1973, p. 150): 

For example, if we want to increase 135 by its tenth five times, we write it down again 
underneath moving one place to the right and we mark the place of the units, we thus 
obtain Ins and the result is 1485. After finding a tenth, we add its tenth a second time, 
the result is lills which we add to it, the result is 16335, which is one hundred and three 
plus thirty-five of a hundred which is a quarter plus a tenth. After finding its tenth, we 
add its tenth, which we then add to it, the result is I~ms' if we add it, the result is 
179'685; what is in front of the place of the units which is 685, is raised to a thousand, 
since the place of the units is fourth for it. If we add its tenth a fourth time, the result 
is 1976535 and if we add its tenth, the result is 21741885 and we carry what is in the place 
of the units which is 41885 to a hundred thousand. We have added the tenth of 135 five 
times. 

It was basically this passage that provided the basis for discerning 
the emergence of decimal fractions in al-UqlidisI's work. Such an 
interpretation apparently neglects serious difficulties which nonetheless 
confront a careful examination. A clear distinction should be drawn 
between what concerns ordinary division by one or another power [a 
positive integer of 10] and what refers to a deliberate usage of decimal 
fractions to understand the extension of the concept of place, and con­
sequently, the exact meaning of the sign used. However, al-UqlidisI's 
silence on these various points, aggravated by the ambiguity of his 
expressions in general, do not facilitate attempts to unravel his real 
intentions. For the time being one negative certainty emerges: unlike 
al-SamawJal, al-UqlidisI never formulates the idea of completing the 
sequence of powers of ten by that of their inverse after having defined 
zero power. That said, in the passage just quoted, three basic ideas emerge 
whose intuitive resonance may have misled historians: what they thought 
was a theoretical exposition was merely understood implicitly, and as a 
result, they have overestimated the author's contribution to decimal 
fractions. We note that al-Uqlidisi 

(1) repeats the same number by lowering its place; 
(2) raises the fraction to the unit place; 
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(3) indicates the fraction by a sign. 
However, such ideas raise more problems than they solve; for instance, 
(1) involves operations that govern all the others: the lowering of a place. 
But how does one proceed when by "place" - maniizil- one only means 
units, tenths, hundreds and their successive products? We may search 
al-UqIldisi's treatise in vain for another definition or usage of this 
fundamental concept. 

Another text by al-Uqlidisi, where the problem of division by ten is 
somewhat neutralized, may clarify the author's ideas. It concerns halving 
an odd integer as often as one wants. 

The author states his rule as follows: 

Halving in any way is five in the place before it. And this necessitates that when we 
halve an odd number, we make the half of the unit five before it and we put over the 
unit place a mark [']57 by which we distinguish the place. 

So the value of the unit place is a tenth to that before it. Now five can be halved 
just as integer numbers are halved and the value of the unit place in the second halving 
becomes hundreds and this may continue indefinitely.58 

For reasons mentioned earlier, one should first of all be wary of 
translating this rule by the formula 1/21Om = 5 x 10m- I , m E 71., and 
secondly, keep in mind the two following ideas: 

(1) By successive halving the unit place, though basically remaining 
the same, becomes that of tenths, hundreds, etc. 

(2) Half of each position - units, tenths, thousands, etc. - is five 
before. 

Whether one considers their formulation or applications, these ideas 
indicate that although al-UqIldisi has an intuitive grasp of the decimal 
representation of a fraction, he immediately moves away. This is where 
the real difficulty and limitation of al-Uqlidisi's contribution concealed 
by "modern" interpretation lie. When al-UqlidisI assumes the unit place 
to be 10k on kth division by 2, it is in order to retain positive integer 
powers. It is as if the calculation of fractions had to be transformed 
into the calculation of decimal integers and as if the sign ['] was intended 
to indicate the number of divisions: two in the case just mentioned, ten 
in the case before. Perhaps this explains why al-Uqlidisi only resorted 
to these ideas for the particular cases of halving and dividing by ten. 
At no time does he consider applying these rules to fractions as simple 

as Ii, let alone the division of any two numbers. 

Without minimising the importance of his intuition or the appropri-
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ateness of the sign chosen to indicate the unit place, we are neverthe­
less forced to conclude that this does not suffice to make al-Uqlidisi 
the inventor of decimal fractions. He still lacks the means - polynomial 
algebra - to free himself from the immediate past, that is guess the 
form of what will arise much later, in short, invent. So his contribution 
remains a preliminary to its history, whereas al-SamawJal's text already 
constitutes the first chapter. 

3. The Status of al-Klishf 

It is difficult, even impossible, to describe how al-SamawJal's work 
was received during the two and a half centuries that separate him from 
al-Kashi (1436/7) and estimate the usage and scope of this theory of 
decimal fractions for mathematicians of that period. However, an 
examination of numerous treatises on arithmetic and algebra composed 
at that time, enables us to isolate a dominant trend: this exposition of 
decimal fractions remained outside active mathematical usage neces­
sary for teaching, research and practice. But the fact that he was not 
mentioned by name in contemporary mathematical work does not permit 
us to infer that his work was neither transmitted nor commented on. 
On the contrary, it would not surprise us one day if one were to discover 
that al-SamawJal's exposition had been pursued and improved by a 
thirteenth or fourteenth century mathematician. Such an eventuality would 
in no way modify the general trend indicated above which requires an 
explanation. So it is important to follow al-SamawJal's exposition over 
two and a half centuries in order to study the changes it underwent. 
It is therefore quite natural to focus attention on the only known 
al-SamawJal's successor to have taken up and made use of decimal frac­
tions, namely al-Kashi. 

One observation should be made straight away: while the "thing" 
in the Treatise of 1172 is unquestionably present though unnamed, in 
al-Kashi's Key to Arithmetic, it is designated: decimal fractions, 
"al-Kusur al-aCshiiriyya". Whether this denomination is due to al-Kashi 
or a predecessor, nothing enables us to reach a decision. We shall simply 
say that, like some new aspects we are about to examine, it is men­
tioned in al-SamawJal's Treatise. Without overestimating the importance 
of the designation, we cannot remain unconcerned by the need and 
determination revealed by defining the "thing" by name. This need and 
determination may attest a knowledge of the mode of being of what is 
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to be designated. In order to confirm this idea, we must now examine 
al-Kashi's work where he mentions and uses decimal fractions; it 
concerns his two most important works, the Treatise on the Circumference 
of a Circle and a later one, the Key to Arithmetic. 

In his Treatise on the Circumference of a Circle (al-Risiila al­
MulJ,ftiya), edited, translated and analyzed in detail by Luckey (1953), 
al-KashI resorts to decimal fractions for the approximation of 1t. It is true 
that in this Treatise he had already reached an accurate approximation 
of 1t by computation based on traditional procedure (the calculation of 
the perimeter of inscribed and circumscribed polygons), though using 
a new and original method. He gives as an approximation of 21t, in 
sexagesimal notation first, the value 

6; 16,59,28,1,34,51,46,14,50. 

In chapter eight of the same treatise (Luckey, 1953, Arabic text, p. 86) 
entitled, "On the conversion of the magnitude of a circumference in 
Indian figures knowing that half the diameter is one", al-KashI wants, 
as his title shows, to translate the above representation into decimal 
notation. He writes (Luckey, 1953, Arabic text, p. 86): 

As the circumference is six times the half-diameter plus a fraction which we raised to 
the ninth [place 60-9], we take this fraction [as the fraction] of denominator ten [times] 
a thousand repeated five times [10 x 1000S = 1016]; because only one part is higher than 
one ninth by the half of its tenth [0 < 10-16 - 60-9 < V260-IO]. 

It is precisely this last expression that ensures the concordance between 
the number of figures of both the sexagesimal and decimal systems. 
AI-KashI gives as follows 

21t = 6,283 185 307 1795865. 

The technical and mathematical competence of his exposition con­
trasts with the brevity and problematic nature of the explanation that 
follows. This was a general feature of the passage devoted to decimal 
fractions in the Treatise on the Circumference of a Circle. He explains 
as follows (Luckey, 1953, p. 87): 

And know that two that is in the last place of fractions is like the minutes in relation to 
integer 6 by supposing that ten minutes make an integer. We can choose to call this 
place tenths. The figure eight on the right-hand side is like the seconds and we call it 
[this place] the second tenths; the 3 which follows [8] it is like the thirds and we call 
[this position] the third tenths and so on according to the calculations of astronomers. S9 
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Which is why we start with a single denominator which is one. This method in Indian 
computation belongs to what we have revealed as well as displaying it in table form; 
and we have set out the figures from left to right ... 

AI-KashI's statement, we can see poses a problem for the historian: 
clarify what al-KashI means by "revealed". Since Luckey60 it has been 
agreed that this revelation refers to decimal fractions themselves. 
However, knowledge of al-SamawJal's Treatise makes a more objec­
tive reading possible: in fact it seems that al-KashI does not refer to 
decimal fractions here, but more exactly the decimal representation of 
2n. Mowover, the entire passage is closely related to this representa­
tion, without in the least achieving, or hardly so, a more general 
formulation. Lastly, the elusive nature of the text confirms that for al­
KashI, it does indeed concern an application of what had been acquired 
earlier. 

But apart from the problem of attribution, definitively solved moreover 
as far as thirteenth and fourteenth century mathematicians are concerned, 
the above passage indicates two ideas still absent in the Treatise of 
1172 and consequently, of prime importance for the history of decimal 
fractions. 

(1) The analogy between both systems of fractions: the sexagesimal 
and the decimal systems. 

(2) The usage of decimal fractions no longer for approaching alge­
braic real numbers, but real numbers such as n. 

The Treatise on the Circumference is of little assistance if we want 
to examine the new ideas in depth and appreciate their extension; it is 
presented as a sort of research paper with no particular didactic aim. 
However, the Key to Arithmetic, a later work, is completely different 
in aim and style, a sum of arithmetic and algebra that is much more 
revealing; not only is the use of decimal fractions explained, but the 
explanation itself is given in general terms. "When we have", al-KashI 
writes (ed., 1967, p. 121) "proved the ratio of the circumference to the 
diameter" [ ... J and raised the fractions to the ninth place, we want to 
convert them into Indian figures so the calculator who is unfamiliar 
with astronomical computation is not reduced to powerlessness". His 
intention is therefore clear: to introduce an alternative, easier, more 
accessible system of fractions, but in which it is possible to effect the 
same operations already used in the sexagesimal system. At this point 
al-KashI draws an analogy between both systems for operations as well 
as denominations; an analogy ensured with mathematical status from 
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the start. Since al-SamawJal, it is known that the same notation for both 
systems is only a restriction to two given bases for a notation valid for 
any base. The reason for al-KashI's emphasis is therefore understandable 
when he writes (p. 79): 

Astronomers use fractions related to one another mac.tu/a, such that their successive 
denominators are sixty and the successive powers [of sixty] as far as one wants. They have 
left those that followed [60-k, k fixed arbitrarily]. They called them respectively: minutes, 
seconds, thirds, fourths and so on. By analogy with astronomers, we have shown -
awradna - fractions whose successive denominators are ten and successive powers [of 
ten] as far as desired. We call them respectively: tenths, second tenths, third tenths and 
so on. 

Once again al-Kashi emphasizes the importance of this analogy in 
order finally to refer to what founds it: in the sexagesimal system, 
places are raised by 60, and the position of degrees lies between two 
sequences, one "ascending", the other "descending". In the decimal 
system the representation is identical provided 60 is replaced by 10 and 
the degrees by units. AI-Kashi had, it is true, already set forth the same 
idea for any base a. 

His expression is therefore identical to that of al-SamawJal with one 
exception: in al-SamawJal the analogy is merely latent, while al-Kashi 
formulated it explicitly. That said, we only need to read al-SamawJal's 
exposition of sexagesimal fractions and compare it with that of decimal 
fractions to conclude without exaggeration that this analogy was not only 
within his grasp but it also must undoubtedly have played a not incon­
siderable historical role. However, the history of science is not the 
psychology of scholars, so this important mathematical achievement 
which makes explicit what was already present in his exposition though 
embedded, must be interpreted. In so far as the history of science is 
not a philosophy of scientists, one must interpret this important achieve­
ment of the mathematician who explicitly states what is already present 
in his exposition though hidden. In our opinion, this achievement is 
inseparable from the autonomy of the new system of fractions and refers 
to its independence as one of many equivalent systems and in partic­
ular the sexagesimal system. Thus it can be asserted that the statement 
of this analogy implies a grasp of its own possibilities of extension. In 
fact, as in the case of al-SamawJal and that of al-Kashi the degree of 
understanding of fractions is the same, but they are not exactly on 
the same plane of existence. What the analogy ensures for decimal 
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fractions is an existence which, this time, crosses the limits of their initial 
field of exercise, the approximation of algebraic integers. 

If the autonomy of the new system of fractions is understood in this 
way, we are in a position to clarify some otherwise unintelligible facts. 
Historians have observed the first one: it is explicitly acknowledged 
and for itself that the transition from one system to another is accounted 
for: the change of base.61 The second refers to an evidently useless task 
undertaken by al-KashI which has always intrigued historians: why for 
the particular case of decimal fractions did he reformulate and justify 
what he had already formulated and justified for any base? As for the 
third, it has been overlooked by historians: the use of decimal fractions 
not only for approaching algebraic real numbers but real numbers as well. 
As we remarked earlier for 1t, in the Key to Arithmetic al-KashI makes 
similar calculations for areas: polygons, circles, circle sections, etc. In 
the course of his calculations he used a notation which is basically 
identical to that of al-SamawJal. 

Heir to al-KarajI's school, al-KashI can no longer be considered 
as the inventor of decimal fractions; it remains nonetheless, that in his 
exposition the mathematician, far from being a simple compiler, went 
one step beyond al-SamawJal and represents an important dimension in 
the history of decimal fractions. Whether or not this progress was due 
to al-KashI, iack of knowledge about the intermediary period obliges 
us to leave this question unanswered for the moment; whatever the case, 
this tradition outlived al-KashI's work, and it is highly probable that it 
was transmitted to future generations through his intermediary. 

There is no need for proof of his posterity as far as Arabic science 
is concerned: we know that al-KashI's work was read and cited by 
mathematicians. Suter (1900, p. 191), for example, pointed out that 
TaqI aI-DIn ibn Macruf (d. 1585-1586) calculated decimal tables for 
sines and tangents. We note here that even in the seventeenth century, 
mathematicians like aI-YazdI (d. circa 1637), cited the Key to Arithmetic 
and decimal fractions as exposed by al-KashI. It is also of interest to 
note that aI-YazdI, though aware of these fractions, freely made use of 
ordinary and sexagesimal fractions, not only in his computations but also 
in his chapter on the theory of fractions.62 

The situation is more complex, as will be understood, when one 
considers science in the West. It would be reasonable to presume that 
mathematicians knew about the results of Arab scientists in one way 
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or another, but decisive proof that this knowledge included decimal 
fractions is still to be found. The discovery by H. Hunger and K. Vogel 
in 1963 of a Byzantine manuscript brought to Venice in 1562 provides 
an important element of this proof. The Byzantine author wrote: "The 
Turks multiply and divide fractions using a special means of calcula­
tion (Bt'ev6~ A.oyapta(J~ou). They introduced their fractions when 
they governed our land". The example63 given by the Byzantine math­
ematician makes it possible to identify without hesitation the allusion 
to decimal fractions. Here we follow the conclusions of those are most 
familiar with this manuscript, Hunger and Vogel, who commented (1963, 
p. 104): 

Die von al-Kan gemachte geniale Erfindung der Einfiihrung einer (Kette des Aufsteigens 
and Absteigens) auch im dekadischen Positions system wird in der untersuchten Handschrift 
wohl zum erstenmal im Abendland sichtbar. Wenn auch schon vor al-Kan Anslitze zu 
einer dezimalen Schreibung der Briiche, die den Indern nicht gelungen ist, voriiegen, so 
war dieser doch der erste, der wirklich auch mit den Dezimalbriichen gerechnet hat, und 
diese persisch-tiirkische Kenntnis hat in Byzanz Eingang gefunden. 

It suffices to say that the Byzantine author reproduces a part of 
fifteenth-century Arabic mathematical knowledge though in less elabo­
rate terms. It is also probable that he was familiar with the works of 
one of al-KashI's successors. Nonetheless, it remains that the use of a 
vertical line (Tropfke, 1921, pp. 176ff.) to separate the fractional part 
- a procedure discovered by al-KashI - is attested in Western texts before 
1562, i.e. before the Byzantine text was attested in Vienna. This notation 
was used by Rudolf, Apian and Cardano. It is also known that the 
mathematician MIzrahI (b. in Constantinople in 1455) used the same sign 
in his Sefer ha-Mispar before Rudolf. All these indications oblige 
us to ask ourselves if the theory of decimal fractions had not been 
transmitted to the West even earlier than 1562, and if this transmission 
was not characterized by a relative loss of information. 

Whatever the case, the fact remains that the various formulations of 
decimal fractions, not only those given here but others encountered 
later in Viete, Stevin and many others, remained relatively outside 
mathematical practice. We have to await the elaboration of the 
logarithmic function, notably with Napier, for decimal fractions to be 
integrated into a mathematical corpus effectively practised. 

In the eleventh and twelfth centuries arose propositions, methods and 
theories which, until now, had been dated at least two and a half cen-
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turies later, and which were in fact already organized and structured at 
that period. We have shown, for instance, that propositions relating to 
algebraic real numbers, the Ruffini-Horner method, the method of 
approximation, in particular what D. T. Whiteside calls the "al­
KashI-Newton" method, the theory of decimal fractions, are in fact the 
work of eleventh and twelfth century mathematicians. Integrated into this 
body of problems and methods studied at the same period, the theory 
of decimal fractions is seen in a new light by historians who have a better 
grasp of the reasons for its invention and is capable of explaining, at least 
partially, its isolation and relative absence before the development of 
the logarithmic function. Our analysis confirms that the search for 
predecessors is historically unfounded and theoretically unjustified as we 
have seen for al-UqlIdisI, for example. We shall reserve the next two 
particularly important questions for a subsequent study: 

(1) Did the algebraists give an algebraic expression of methods 
already used by astronomers? 

(2) What did they contribute to the prehistory, if not the history, of 
analysis? 

This implies that an active mathematical tradition was established in 
the eleventh and twelfth centuries. We have drawn up their identifica­
tion sheet: al-KarajI's school. This name also designates a programme 
formulated by al-KarajI and pursued by his successors: the arithmeti­
zation of algebra as it was then called, the constitution of algebra as 
"the arithmetic of unknown quantities". Lastly, it also suggests that 
historical research should go back to the drawing board to fill in evident 
gaps and compensate for obvious ignorance. For example, we now know 
that the status attributed to al-KashI by traditional historiography is not 
his; until now enjoying the privilege of artificial independence and 
isolated from tradition by a difference creator of myths, al-KashI has 
quite naturally regained the place that has never ceased to be his as the 
undisputed successor of al-KarajI's school. As a result the picture of 
Arabic algebra drawn by traditional historiography must be corrected 
or rather drastically altered. The first task of this project will be to redraw 
the classical picture of the beginnings of Arabic algebra and its 
transmission to Western mathematicians in the Middle Ages and the 
Renaissance. The main task is not to discover lost manuscripts, exhibit 
forgotten works, in short, to establish facts alone, but above all to supply 
hypotheses necessary for this research. In this respect, documentary 
evidence is so abundant and dispersed, and studies so rare, that even 
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purely descriptive historiography remains hazardous unless theoretical 
guidelines exist. It is therefore opportune to define the theoretical direc­
tions that inspired and governed the discoveries of mathematicians in 
the eleventh and twelfth centuries. 

As we have seen, the work of al-Karaji's school on polynomial 
expressions paved the way for new investigations connected with the 
extension accomplished earlier of algebraic calculus, which was to find 
fruitful application in a field other than that of algebra. This new field 
of application for algebraic calculus had already been defined, though 
partially, by arithmeticians before al-KarajI's school. They extracted 
square and cubic roots, and possessed formulas for the approximation 
of the same powers. But for want of abstract algebraic calculus, these 
arithmeticians were unable to generalize either their methods or 
algorithms. The generalization of algebraic calculus required the renewal 
of algebra by al-KarajI's school in order to become a component part 
of the area of numerical analysis that includes methods for solving 
"pure powers", according to the sixteenth-century expression, and a 
variety oJ other procedures for approaching positive roots. Algebraist­
arithmeticians, it is true, then introduced these methods without any 
concern for rigour or theoretical justification. The first formulation of 
theoretical questions, and in particular, problems of the existence of roots, 
had to await another algebraic tradition, that of algebraist-geometers 
like aI-lusT. The practical orientation of the algebraist-mathematicians, 
which was still alive in the seventeenth century, was partly the result 
of their objective itself: to exploit the results obtained in algebra in 
order to pursue and extend a set of problems previously considered by 
arithmeticians. They therefore went back to arithmetic in order to discover 
the applied extension of an algebra in some areas of arithmetic which 
had just been renewed by arithmetic. It was during this dual, or, if you 
prefer, dialectic movement between algebra and arithmetic, that mathe­
maticians looked for new methods they wished to be iterative, capable 
of approximation in a recursive way. And this clearly defined program 
is the conclusion to the theoretical and practical configuration wherein 
lies the invention of decimal fractions. 

APPENDIX 

AI-SamawJal, Treatise on Arithmetic llov-1l4r. 



NUMERICAL ANALYSIS 

y -\\. L.-o~1 11l4l.1 0A ~ ~~I y4JI 

~4J1 )~I r~ ::l~J <i 
*~I ulaWll r~ 

135 

~J ~I.rll 4JA clH .r-&- Jt ~ } ~jA ~ ~ ~I 1~1 
uw..o.l.l 4JA cll~ J-:P Jt JL. Jt ~ y..,.;t ~ ~t .~I (6.- 5 

U:l)J'1.&1...; r--~ lll:l :~ C4 ,. ,:AJ.J'1.&1...; y}hll <4JA> bt] 

:l1.)J:.t u~t • (6.....JI cl1:.I ~4l1 ).,,-s:JI '.o .II cl.l:i 4JA (~ .:,t 
~j;! <:f.l.ll :l.4l1 J ~ J..>.'., J5' ~""";'J FI cll.ll .:,~Ull 
.1r.~1 (.;.... -*' ~I W • r..lit r~IJ ~ u:ljJ t.l l ~J 

.~~I 10 

.JAJ 41 ul)J¥1 y..,.;t C4 ~u.'" )~ lil;J Gt :cll~ Jl!. 
1-\\\ V .JAJ J...Y..I ).l:!-I J.~.r JllI .:,~li u~JJ.TI / ~""[i; 

r.r. TI .:,lSJ ~~I TI C4 ~ \0 t.' r~'., ~ U:lj "IT (# 
. \0 4JA (.~ TIJ V J...Y..I ).l:!-I)l..ai • \0 4JA 

J ~I"'~J .o.!.ll'; Jl i)l..!~1 ~J~ ~ W JlJ 4 t'"lr J .l..,.o..:.. ~ ~I * 
(5~1 JJ-4- o.!.ll'; ir ~1" ~I t" ~ ':J ~ ~ \,W..l! J.AlJ .0 ':t ~I 
l. J,b.. u=-u [ ]. u..:Y..S' ~ L. < > I~I J ~l=JI ).t-4}1 L:.L...;:...1" .~I 
9- ~41IJi)~~J~IJt..."...J...'~.):! 8-.::.L.....j41~.."... 4-~ 

.J-~I J b...;1,,~ 1 u~JJ 12 - 4.6. 1 &::4-



136 CHAPTER II 

~I (L:...- JAJ Y ~/;J.\:" JA ~ &-- ~"';":-I .~tJ 
(6..... J ~Jt l:.J~ .rr ~I ~.tlli)- ~I~t b~JJ'Y ~.J 
<)L..a.i> (J..>\., ~I,);- b~jJ ~I rL--~.J-4 J ~l!I\., ~I 
.Y 4/'J 1- M~ cjll ~I C-A ~ 1:il:l1 ''r.~1 (?w JAJ "[&-J 

." &a YJ Y J-~I ~I)\.,..i 5 

b~JJ .YI ~.J Y (.fJ .r:- JA Jl. Jl. &- ~~I, ~~ 
I!1l~J ,~I (L:...- J JJ~I Lw...,....u ,I"\ I Jl. JL. ~~li ~I~t 
~t ~ J I!JW\., ,~':ll &- ~..r- ~t '~jA J ~W\., ,~WI 
'\0 A-i (.u.\., ~I,);- b~jJ ,~I rL-- JA Ij.lll ~':ll ~ 
,~T,.'\O &a (.~ YIJ ~I ~I )l.AL~l:l1 .I~~I (?w JAJ 10 

"'-'" b~JJ ,v ~.J r (..,..;..;,~ / ~ ~ Jl. &- ~"';":-I 
~I (6.- ~t lj~1 ~ ,0 \:" \:" 0 ~ Jl. ~.tlli .~I,.\C.t 
JL. JL.J I!JWI J lj~1 ~J ~WI J lj~1 ~.J-4J JJ ':ll J 
.~~I (~JAJ Vi\\ ~u (.b-\., ~I ~ b~jJ ~I)I J 4j~1 
~\ JAJ Vi\\ &a .I.H'-t ~J ~l>i lj~ ~I)W ,z _JL:JI 15 

.V"'~II.lA ~J .y,,11l1 



NUMERICAL ANALYSIS 137 

t......t;..1 ~14l1 0A ~ V"~LJI y~1 

~yd.:ll J~t ~ ~ ~~ ~\., ~t ~.J 'I' 
~I}.I oJA ~ ~\., .):!~\.,; 0 ""ill ':t ~I 
~~ ~ J~~I oJA 'I' wl."JI )~I ~J 

~ ~ JI? ~l>.'ll '-:3."... &e ~41l.:--l:.:l.1 ~I).I .) L..5 5 

cll1 ~ .'?-~I ~I.r ($?-~I ~I J r"'P dl.lS' ,~~ ~..,...wl 
Ut:.U:J J=ll CUI ~..uJ1 ~I.r ~ 1h....1.,Jl5' ~l>.'ll '-:3.rJ ~I 

~~I .~ ~I ~I.r ~J ~~ ~ ;Jl!.tJ ..,...wI ~ ~ tA~6..i 
\-\\y ul~1 .'?-t~.r ~6..'lI~). i:JI..:.II '-:3).1 ~J l~~ ~ 

. V""~I 1.lA ~J J}t .Iy,-t ttJ ~I.:l\., uW,1 .Iy,-t ttJ ~I.:l\., 10 

JL. t ~I J...;:i t l:....:J1 t t...........AJ1 uL......:.. 1 \ •• "··1 I~I J. c::- J.fi.. J . (S" ~ u 
yLJI ~ rl ~l>.'lIl.:3."... Jl J-I~I yl.t!t &e "dl~..r:J;} JI.lI 

~.,.... .:...J. Jl r-)I ~ 4lli ~ <jll J"h-ll ~ Us:J , LAJ.!&. 

~t I~U.~ &e .'?-t ~ '-:3).1 o.lA ~ ~ ~J ,u~1 .I?,-t 

o.lA J (?- W ,uW,1 .Ir.t '-:3.r U"Jl W4:. yUI.1J~ ~ 15 

: ~l JL!..l1 ~I).I 'OJ)"" o.lAJ ,~~ &e .'?-t * '-:3).1 



138 CHAPTER II 

D D D o 0 0 0 0 0 0 DOD 0 0 0 0 0 DOD o 0 000 

L (\ ,. L 

clJ~ l:;:S'Y ~J \"\ t..-AJI ~ t~J "'ff ~ n-:- U-...i I~~ 
I i ).,..JI • .lA J 

" Y •••••••••••••• 

'''' 
J lY, W' J...JI ~J ~I Jl ~r ~ r.,.....all JA:ill r! 

u-->-~ ll..,...:=ill~~ . ~I).I ~ hu 4 t~ .:,t Jl t..-AJI 

I 43)~ • .lA I.. J.-. ~Ir 

~~~.,.......,...... ,.. 
~~.,.......,...... < 

~~~J~~"""" )..­
~u... 0 

~,.. 

<'i:'"' t t - - ul ~L. ir tift. 
.::.. J~T i~ ir tlft.t 

ult ir tlft.t 
~L. ir tlft.t 

ip ir .lft.t 



NUMERICAL ANALYSIS 139 

1- "'" ~L. ~ / .Iy,t L-..,;.J ~ (jA .Y.-J b.~t ~ t.:....., cll~J 
(jA .Iy'-' ~)J J~i ;~ (jA .IY.-t ~WJ uJt (jA .IY.-t ti)UJ 

~ ~ v-J--J ~ Uoa.,jJ ~J ~ t:..... clJ~J .Ult ~L. 
~~v-J--J~v-J-- v-J--~J~~~J 

.~ 

4.:l,J-4 ~J J.L}~I )~I ~J 'f ~"';';~)-4- U.l) 1oi}1 

I .;j).,,- • .i.A L. J..-.:i 

L. J.-.:i ,(6...,.JI J ~ W' ~\., j.!~1 J j....aJ1 ~ ~ 
, .;j).,,- • .i.A 

"",\TTVV 



140 CHAPTER II 

y -, ''" [~) ~ V"'L-.t U~J ~J ["""""';'J) .lL...i lj~ Iill~J / 
? ~J [?)?? ~ ~J [?)?? ~J 
~J [~) ~ ~? ~"""""';'J [~)? ~ ~ 
?????~J[?)???~~ 

.[?) 5 

~~ ·~GlI • .lA ci tl-Y.I .l1"\&'~I • .lA ~ J-I"):' rW ~t (i:~ 
.V"'~~ ~I Jw.l Jl ~ (~':J 4:.:~ ~ ~~I &-a 

Jl lAl!....-.a • lA 1..Lie .,t· I t.:.....J1 .,U ~ :,i b.l t Gt : 4ll!... . :).~ .....:) 

~ iJ • V'" L.;.. i lj~ Iill ~ ~ Ls:i • ~I..J.I • .lA '-:-" U::i ~ ~ I • .,...w I 
• .lG.. ':II t..:J j-" ~J t.:-JI ~ ~I ~I}.I .l~ ~I ...\Ullill~ Jl 10 

'pL..., ~l!::i V"'l..:-4lII .lA ~J • ~ ~ V"'L.. .. ;J lj~ :)W 
.~I}.I 

~~ (,.,..;- &-a .I~t tl-\J.I )~I ~ ~~ ~i b.l) ~lJ 
&-a Iill~ ~J uLU~ ul~1 &-a lA};! L. t .lL...':I1 t..:Jj-" ~ 

1- "t. ~J' ()u-t y~1 ~I}.I .::...J. ~J ,~i / ~ Jl (L:......JI 15 

"HVVJ .lG..i lj~ Iill~J .IJ.S:A j-IJ.I ~H' (,.\:o.IJ :)I.A.....~I ~ 
\ •••••• [.) &-a (.r. [r) 
" ['1< \ ) 



NUMERICAL ANALYSIS 

r 

[rl \ '\ Y Y v V 

\ . 

141 

. clI~ ~j ~ JL.j JL. JL.j ~I &.0 j-}.~ J ~ I~j 
~ (~~tj J-I...ri-=JI JL....ct JeiJJ .~I J-I...,JJI I~ ~ 5 

'i.lll ~ Zi).1.1 Jl y.,titj J~t ~ J.>.\., JS' tA~.w ~~ '1 u41~ 
.~ 

4 - laJ.a.i .1>~J U)WI U,;- .!.lla J-\II r.i 3 - J-\II r.i ~I)I .".t..JI U .1>I.,JI 1 

.jl~'jI.~ 



142 CHAPTER II 

NOTES 

1. See the reproduction of De Thiende and its English translation by Robert Norton 
(1608) in Struik (1958, pp. 386ff.). See also the French edition in Sarton (1935, 
pp. 230-244). 

2. For instance, E. J. Dijksterhuis (1970, pp. 16 and 18), the best specialist on Stevin 
wrote: "Stevin's main contribution to the development of mathematics being his 
introduction of what are usually called decimal fractions", and further on: "Yet 
none of the steps taken by Regiomontanus and other writers is comparable in 
importance and scope with the progress achieved by Stevin in his De Thiende." 

See also Sarton (1935, p. 174): "There are many examples of decimal fractions 
before 1585 yet no formal and complete definition of them, not to speak of a formal 
introduction of them into the general system of numbers". We could multiply such 
references and quote numerous authors who consistently repeat this opinion. We shall 
simply give a recent example, that of J. F. Scott, who wrote in 1969 (p. 127): 
"Nevertheless, it was not until the close of the sixteenth century that we detect the 
first methodical approach to the system. In 1585 there appeared a short tract La Disme 
by Stevin ... In this, the principles of the system, and the advantages which would 
follow from its use, are clearly set forth." 

3. See Gandz's article with a preface by Sarton (1936, pp. 16-45). 
4. Although Gandz (1936, p. 21) wrote: "The invention of Bonfils introduces two new 

elements; the decimal fractions and the exponential calculus", all that may be deduced 
from the translation of Bonfils' Hebrew text, reproduced by Gandz, is summarized 
in Juschkewitsch (1964b, p. 241) as follows: "Die kurze Skizze eines Systems von 
'Primen', 'Sekunden', 'Terzen' usw. in einer Handschrift des jiidischen Mathematikers 
Immanuel ben Jacob Bonfils, der im 14. Jahrhundert in Tarascon gelebt hat, ist im 
Vergleich zur Dezimalbruchlehre al-KasIs vollig unbedeutend. - Dabei hat Bonfils 
keinerlei Berechnungen mit Hilfe von Dezimalbriichen vorgenommen." 

5. Tropfke (1930, p. 178) may be cited among many, who wrote: "Wenn noch andere 
Manner neben Stevin als Erfinder der Dezimalbriiche genannt werden, so ist das nicht 
zu verwundern. Die Erfindung der Dezimalbruchrechnung lag gleichsam in der 
Luft; Gelehrte aus allen Landern beteiligten sich an ihr." This same idea is expressed 
by Sarton (1935, p. 173). 

Lastly, see Cajori (1928, I, p. 314): "The invention of decimal fractions is usually 
ascribed to the Belgian Simon Stevin, in his La Disme published in 1585. But at 
an earlier date several other writers came so close to this invention, and at a later date 
other writers advanced the same ideas, more or less independently, that rival 
candidates for the honor of invention were bound to be advanced. The La Disme 
of Stevin marked a full grasp of the nature and importance of decimal fractions, 
but labored under the burden of a clumsy notation". 

6. Struik (1969, p. 7). A less eclectic but more embarrassed position is held by 
H. Gericke and K. Vogel, the German translators of Stevin's La Disme. They wrote: 
"AI-KaschI bringt aber nicht nur die vollstandige Theorie, sondern er fiihrt auch 
die Rechnungen gelegentlich im einzelnen vor, einschlieBlich der Verwandlung von 
Sexagesimalzahlen und Briichen in Dezimale und umgekehrt wobei er zur Trennung 
von Ganzen und Briichen sich verschiedener Methoden bedient ... " 
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In fact, according to these authors (1965, p. 45) the only difference with Stevin 
is described as follows: "Was aber bei ihm im Gegensatz zu Stevin auch nicht zu 
finden ist und was diesem ein Hauptanliegen war, ist die konsequente Anwendung 
auf aile Masse, deren dezimale Einteilung von grosster praktischer Bedeutung sein 
musste". On the one hand it is known that these applications had no real impact, 
and on the other, that al-KiishI, as we shall see, proceeds with conversions other 
than certain measurements current at that time: it would therefore be incorrect to 
emphasize the difference. See Gericke and Vogel (1965, pp. 44, 45). 

7. See A. Saidan's edition of Kitiib al-Fu~at fi al-Jfisiib al-Jfindf, 1973. 
8. We know through ancient Arabic bibliographers that al-Samaw'al wrote a Treatise 

on Arithmetic entitled al-Qiwlimf fi al-Jfisiib al-Jfindi. The thirteenth-century 
bibliographer Ibn AbI U~aybi'a wrote in his Tabaqiit (1965, p. 462) that al-Samaw'al 
had completed this treatise in 568 of the Hegira (1172-1173). 

See also Suter (1900) and Sezgin (1974, p. 197). The entire work is still lost. 
But a work by al-Samaw'al entitled al-Maqiila al-thiilitha fi 'ilm al-misii?uz al­
hindiyya ("The third volume of the work on Indian mensuration") is to be found in 
the Biblioteca Medicea Laurenziana, Orient. ms. 238. This manuscript comprises 115 
in-folio pages and the copy, dated 751 of the Hegira, is in poor condition. The 
above title is obviously incorrect. I take this opportunity to thank Sezgin (1974, 
p. 197), who sent me a microfilm copy of this manuscript, whose existence he 
mentioned in the above work, observed quite correctly that the manuscript "hat 
trozt ihres Tilels mit der indischen Ausmessung nicht direkt zu tun". We can 
effectively show that it is a change with 115 in-folio pages from al-Qiwiimf ("Treatise 
on Arithmetic"). The copist wrote at the end (ff. 114', 114V): "We have completed 
the book al-Samaw'al composed at Baku and finished on 29th of the month of 
Ramadan the year five hundred and sixty-eight". He also mentioned possessing a 
copy written by al-Samaw'al himself. The subject, dates and attribution leave no doubt 
as to the identity of the manuscript. We set forth the results of this discovery for 
the first time at the Congress of the History of Arabic Sciences at Aleppo and we 
have undertaken a critical edition of this difficult text. 

9. Al-Samaw'al, al-Qiwiimf, f. 32'. 
10. luschkewitsch (1964b) where the author apparently repeats the conclusions of the 

analysis in the introduction of the Russian translation of al-KiishI's work (Al-KiishI 
1956). A. S. al-Demerdash and M. H. al-Cheikh, the editors of al-KiishI's work (1967) 
apparently shared Luckey's opinion. Lastly, in a detailed study by Dakhel (1960), 
Luckey's analysis and point of view is repeated. 

II. Al-Qiwiimf, f. 108'. Al-Samaw'al used the Jummal system to express numbers. 
It consists of the 28 letters of the Arabic alphabet arranged in an ancient Semitic order 
for expressing numbers. For typographical reasons we have used the corresponding 
numbers. 

12. Ibid., f. 108'. 
13. The literal translation of al-mu'{iya is "indicator", which means "which gives one 

of the figures of the root". The text would have been incomprehensible if we had 
retained this translation. 

14. Al-Qiwiimf, ff. 108'-108v• 

15. Al-mu'{iya (see note 13). 
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16. Al-marli/f. 
17. Al-Qiwllml~ ff. 108'_109'. In the ms. the left-hand column headings are omitted both 

in this and the following tables. 
18. Let f be a real function with a real continuous variable: a a real number strictly 

positive, we call the dilation of f of ratio a the application cp~; cp~(x) = f(a-1x) for 
any x. 

19. Al-Qiwllmi, f. 109'. 
20. Ibid., f. 104'. 
21. Ibid., ff. 104'-105'. 
22. Ibid., f. 109'. 
23. Ibid., f. 109'. 
24. Ibid. 
25. Ibid. 
26. Ibid. 
27. Ibid. There is obviously an important break in the manuscript. We have been able 

to establish that f. 110' follows f. 69'. 
28. Ibid., f. 109'. 
29. Infra, Chap. III, pp. 153ff. 
30. Infra, Chap. III, pp. 201-202, note 12. 
31. Infra, p. 158. See also al-TiisT (1986), I, pp. 32ff. 
32. I.e. expansion of the relation 0 < a < 1. 
33. Infra, p. 164. 
34. Ibid. 
35. Infra, pp. 162ff. 
36. Al-Qiwllmi, f. 11 Or. 
37. Infra, pp. 202-203, note 15. 
38. Al-Qiwllmi, f. 111'. 
39. Ibid. 
40. AI-QiwiimT, ff. 68' and 68'. 
41. Ibid., ff. 68" 69', 69'. 
42. This point was brought to our attention after publication of this article in a corre-

spondence with M. Bruins and also independently by Waterhouse (1978). 
43. Al-Takmila fi al-lfisllb, MS 2708, Uileli, Istanbul, 22'ff. and 29'ff. 
44. AI-QiwllmT, ff. 58'ff.; 62'ff.; 64'ff. 
45. AI-NasawT, al-Muqni C fi al-/:tisiib al-/:tindT, MS Leiden arabe, n0556, ff. 21, 22. 
46. AI-Samaw'al, al-Tab~ira fi cilm al-/:tisllb, MS Oxford Bod. Hunt. 194, f. 18'. 
47. See AI-QiwiimT, f. 27'. 
48. Ibid.,f.ll1'. 
49. Ibid., ff. 111', 111'. 
50. AI-Samaw'al, Al-Blihir, 1972, pp. 21 and 22 (Arabic text) and pp. 18 and 19 (French 

introduction). 
51. Ibid. 
52. Al-Qiwiimi, f. 112'. 
53. Ibid., f. 113'. 
54. Ibid., f. 114'. 
55. Ibid. 



NUMERICAL ANALYSIS 145 

56. Saidan (1966). The same idea was expressed on several occasions in his edition of 
al-Uqlidisi's book. He writes for example: "What inclines us to be proud of al-UqlIdisi 
is that he was the first to deal with decimal fractions, suggest a sign for separating 
integers from fractions, and treat fractions as he treats integers. Before al-UqlIdisi 
was known, common opinion held that the first to deal with decimal fractions was 
GamUd ben Mas'iid al-Klishi", p. 524. 

57. In his English translation of this passage, A. Saidan (1966, p. 485) integrated the sign 
in the text. We may therefore read: " ... and mark the unit place with the mark' 
over it ... ". However, if we consult the manuscript of al-Fu~at, this sign is missing. 
Nor is it to be found in Saidan's edition, only in his English translation. For this 
reason we prefer to use the manuscript although we always refer to Saidan's edition, 
easier to consult. 

58. AI-UqlidisI gives the following example: "we want to separate i9 into two halves 
five times, we say: half of "9 is four and a half, we write half 5 in front of 4, we 
divide ten into two halves, and we mark the unit position, we obtain 95; we separate 
five and nine into two halves, we obtain 475, which we divide into two halves, we 
obtain 2375 and the unit position is (the position) of thousands for what precedes 
it. If we want to pronounce what we have obtained, we say that the separation into 
two halves makes two, plus 375 of a thousand. We separate this into two halves, 
we obtain 11875, we separate into two halves a fifth time, we obtain 059375, we 
find 59375 in Saidan's edition which is 59375 of a hundred thousand. Its ratio is 
said to be a half plus a half eighth plus a quarter of an eighth". Al-Fu~al, MS 802, 
Yeni Cami, Istanbul, 58'. See al-UqlIdisI, Al-Fu~al, pp. 145-146. 

59. In the text one reads "the calculation of stars", this is probably a copyist's error. 
The accepted term is the calculation of astronomers. 

60. Luckey (1951, p. 103) wrote: "Wahrend also K. die ganzen wie die gebrochenen 
Sechzigerzahlen von Vorgangern tibernahm, schreibt er sich wiederholt ausdrtick­
lich die Einftihrung der Dezimalbrtiche zu. Meines Wissens fand man bisher zwar 
in keinem alteren arabischen Texte, wohl aber in Schriften, die arabisches Gut 
wiedergeben oder auf solchem fussen, den Gedanken ausgesprochen, daB an die Stelle 
der Grundzahl 60 der Sexagesimalbrtiche eine andere Grundzahl treten konne, als 
welche im (Algorismus de minutiis) von Seitenstetten aus dem 14. Iahrhundert neben 
12 auch 10 genannt sein soli. Auf das, was Immanuel Bonfils aus Tarascon tiber 
Dezimalbrtiche sagt, soli spater eingegangen werden. Der Gedanke der Dezimalbrtiche 
mag also im Mittelalter in der Luft gelegen haben. Wie andere vor und nach ihm, 
so kann auch K. sehr wohl selbastandig den Einfall gehabt haben, nach dem Vorbild 
der Sechzigerbrtiche Dezimalbrtiche einzuftihren. ledenfalls aber hat man bisher in 
keiner vor seine Zeit fallenden Schrift eine ausftihrliche praktische Durchftihrung 
der Methode der Dezimalbrtiche im Positionsystem, wie er eine solche bringt, 
nachgewiesen." 

61. Luckey (1951, pp. 115ff.). Let us remark moreover that the problem of the 
periodicity of the fraction may occur during the solution to this problem. We know 
that it is always possible to express a decimal fraction exactly by a sexagesimal 
fraction; but it is not always possible to express a sexagesimal number by a limited 
decimal fraction. In the French translation of the section on the history of Arabic 
mathematics, Youschkevitch (1976) wrote: "Note that al-KlishI neither mentioned nor 
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remarked on the obvious periodicity of the fraction 0,141 (592) he obtained". In a 
note on the French translation (p. 168), he recalled a remark made by Carra de 
Vaux: the periodicity of a sexagesimal fraction is indicated by the thirteenth century 
mathematician al-Mardini. 

We are now able to show that the periodicity of a sexagesimal fraction was already 
known in the twelfth century. For instance, to convert a fraction - e.g. 4/11 - into 
a sexagesimal fraction, al-Samaw'al obtains ;21,49,5,27,16. He then writes 
(al-Qiwaml, f. 89'): "And these five figures repeat themselves indefinitely. If we 
are satisfied with limiting ourselves to a tenth of a tenth [60-2°] for example, the 
answer is ;21,49,5,27,16,21,49,5,27,16,21,49,5,27,16,21,49,5,27,16 and if we want 
a more correct [number] than this we repeat these five figures up to a higher [place] 
of these places". These computations demonstrate that the problem of periodicity 
at least was already known in the twelfth century. 

62. MS Hazinesi, 1993, Istanbul. See in particular f. 49'. 
63. Hunger and Vogel (1963). The example given is the following: to calculate the 

price of 153112 measures of salt, the price of each being 161/4 aspra, i.e. 1531/2 16114• 

The author wrote that the Turks put 5 instead of half, and 25 instead of a quarter. 
So we obtain 2494375, from which we separate the last three figures which are in 
the three last positions ('JI1l<Pta). The calculation was made as follows: 

ex E 1 1 E 5 3 1 5 
ex <; 1 ~ E 6 1 2 5 3 

~ <; ~ E 1 7 6 7 5 8 
1 ~ 11 3 0 7 0 

e ~ ex· 'ttxu'tex elmu 9 2 1 0 
ex E 1 E i.e. 5 3 5 

~ 8 e 811 ~ E 2 4 9 4 3 7 5 

We note that the zero (ouMu) is indicated by a point, to what digits the Greek 
letters correspond in the positional number position and that the fractional part is 
separated by a vertical line. 



CHAPTER III. NUMERICAL EQUATIONS 

THE SOLUTION OF NUMERICAL EQUATIONS AND 

ALGEBRA: SHARAF AL-DIN AL-TUSI AND VLETE 

In the beginning was Viete. Thomas Harriot, William Oughtred, Claude­
Fran~ois Dechales, John Pell ... , all improved the method in one way 
or another,l Newton2 took it up later. Modified by Joseph Raphson, this 
method is known as Newton's method in textbooks on numerical 
calculation. Lagrange, J. R. Mouraille and Fourier3 attempted to solve 
its difficulties. Independently of each other, Ruffini and Horner4 

developed investigations by Viete and Newton: they proposed a more 
practical algorithm for extracting the root of a numerical equation of 
any degree. 

This is the accepted outline for recounting the history of this method. 
Historians of mathematics not the least important - i.e. Montucla, Hankel, 
Cantor, Wieleitner, Cajori, Tropfke - all have recognized Viete's priority 
and commented on Newton's improvement; some were subsequently 
to describe the refinements made by Ruffini and Horner. In the early 
nineteenth century, the same outline was accepted by Lagrange, in his 
Traite de la resolution des equations numeriques de tous les degres he 
wrote 

Vi~te was the first to be interested in the resolution of equations of any degree. He has 
shown in his treatise De numerosa potestatum adfectarum resolutione how one may 
solve several equations of this kind by analogous operations used for the extraction of 
roots of numbers. Harriot, Oughtred, Pell, etc. endeavoured to facilitate the application 
of this method by giving specific rules to reduce trial and error depending on the dif­
ferent cases that occur in equations in relation to the signs of their terms. But the multitude 
of operations required and the uncertainty of success in a large number of cases made 
them abandon it altogether. 

Lagrange (1798, pp. 16-17) went on to write: "Viete's method was 
followed by that of Newton which is only a method of approximation". 

This historical outline, expressed in similar terms, is frequently 
encountered in later histories of mathematics. Just a few years later, 
Montucla (1799, t. 1, pp. 603-604) was to write 

147 



148 CHAPTER III 

Among Viete's purely analytical discoveries, one should also include his general method 
for the solution of equations of any degree. Reflecting on the nature of ordinary equations, 
Mr Viete remarked that they were only incomplete powers, and he conceived the idea that, 
as one extracts the roots of imperfect numerical powers by approximation, so one could 
extract the roots of equations, which would give the value of the unknown. Consequently, 
he proposed rules for that purpose in his work entitled De numerosa potestatum adfec­
tarum resolutione; they are similar to those which are used to extract the root of a full 
power and may be conveniently employed for cubic equations. Harriot devoted half of 
his Artis Analyticae praxis to developing them; they are also explained in Oughtred, Wallis 
and de Lagni's Algebra. Wallis even used them to solve a fourth degree equation, and 
he pursued his approximation to the eleventh decimal place. But one has to be endowed 
with a mind as capable as this geometer to undertake such a laborious task. Today we 
possess more convenient methods of approximation .... 

The reason why we insisted on citing such long extracts is because 
they give a precise description of the overall historical and analytical 
picture of our problem since Viete. Later on, Ruffini and Horner will 
be correctly placed in the finished picture, and the result will appear as 
the so-to-speak almost definitive history of the problem, not only in 
the writings of historians, but also in historical notes by mathemati­
cians: Young, Burnside, Whittaker and Robinson,S among many others. 

While this historical picture was endlessly repeated throughout the 
ninteenth century, around the 1850s investigations by S6dillot and 
Woepcke6 had already implicitly started to undermine the confidence that 
might be granted this outline. Examining the prolegomens of Arab 
astronomers and mathematicians on Ulugh Beg's astronomical tables, 
they revealed the existence of methods of approximation for solving 
numerical equations: these methods were multiple, and moreover, highly 
developed. Confronted with their particularly fine appearance, Hankel 
(1874, p. 292) did not hesitate to write about one of them: "Diese schone 
Methode der Auflosung numerischer Gleichungen steht allen seit Viete 
im Occident erfundenen Approximationsmethoden an Feinheit und 
Eleganz nicht nach". He affirmed, moreover, that this was the first 
instance of successive numerical approximations encountered in the 
history of mathematics. 

The discovery by S6dillot and Woepcke certainly threw doubt on the 
traditional version of the history of our problem. But this doubt could 
only be implicit, insofar as the work of the mathematician Shalabi did 
not contain a systematic treatment of the so-called problem, but only 
considered a particular case, the calculation of the approached value of 
sin 10. This may explain why the investigations of Sedillot and Woepcke 



NUMERICAL EQUATIONS 149 

went almost unnoticed. But ShalabI had cited al-KashI, his fifteenth 
century master of algebra: full attention then focused on the latter. In 
1874, Hankel (1874, pp. 292-293) suggested, though still unable to justify 
it, the importance of al-KashI for the history of our problem. It is true 
that John Tytler (1820) had already underlined the fact fifty years earlier. 

However, it was only in 1948 that Luckey presented the first exten­
sive and detailed study of al-KashI's work; this time the traditional 
historical picture was explicitly shaken. In a fundamental article,7 Luckey 
demonstrated that al-Kash! was not only the inventor of decimal 
fractions, but, moreover, he already possessed the so-called Ruffini­
Horner method. 

The discovery was so important and knowledge of the history of 
mathematics before al-KashI so fragmentary and uncertain, that Luckey 
and historians of mathematics who followed him, experienced the greatest 
difficulty in placing al-KashI's work in a historical context. An under­
standable difficulty if one considers the scope of the Key to Arithmetic;6 
by its standard it stood in sharp contrast with most other works then 
known to historians. 

To circumvent the problem without solving it, historians of science 
sometimes, and those of Arabic science often, implicitly changed their 
angle of approach. Instead of placing al-KashI's results, they were 
minimized, and instead of looking for conditions which made the algebra 
of the Key to Arithmetic possible, they only aimed at identifying an 
eventual forerunner. A clear definition of al-KashI's algebraic activity 
in the first place would undoubtedly have made it possible to place it 
historically afterwards. But this approach was usually reversed. Only 
the results, irrespective of an analysis of his activity, were considered, 
and as was common in this field, the search for a forerunner went back 
to Alexandria. But as the Alexandrians knew of no similar method, and 
al-KashI dated back to the fourteenth-fifteenth centuries, and as a method 
for extracting the root of a numerical equation similar to al-KashI's 
had been found in thirteenth century China, a Chinese origin was 
suggested and affirmed without sufficient detail.9 As a result, Luckey's 
interpretation and analysis were accepted by some historians of mathe­
matics without discrimination. 

This historical approach is questionable not only for its conclusions, 
but even more for its suppositions: the history of mathematics is con­
ceived of as mathematical results almost independently of the conceptual 
sequences they produced. Of history, there only remains an account oJ 
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a succession of facts, the transmission of propositions. While not wishing, 
in turn, to adopt a position which reduces individual mathematical results 
attained by mathematicians to a mere indication of the theory on which 
they are based, it may be admitted that a result is the same for two 
different writers if, on the one hand, the norms of the discipline that 
control them are the same, and if, on the other, the interests that guided 
these mathematicians are similar. 

For the historian of a specific problem, for instance the solution of 
numerical equations, what is important is to situate it in relation to 
disciplines to which it is attached: algebra and arithmetic. Since 1948, 
however, our knowledge of the history of these disciplines among Arabs 
has made some progress. The name of al-Samawoal permits a greater 
understanding of al-KashI's contribution to the knowledge of decimal 
fractions. That of al-KarajI and his successors, al-ShahraziirI and 
al-Samawoal,1O as we have shown, are rigorous proof that the Key to 
Arithmetic was only the culmination of a longstanding and, for the age, 
intense activity in arithmetic and algebra. The names of al-Khayyamll 
and Sharaf aI-DIn al-TiisI,12 the importance of whose algebraic work 
we shall show for the first time, are of capital importance, not only for 
algebra but also for algebraic geometry. 

Seen in this theoretical and historical perspective, the problem of 
numerical equations must clearly be stated in different terms. We shall 
therefore state and justify the two following propositions. 

1. Al-Kiishf's work - not only on numerical but also on decimal frac­
tions - is the culmination of a renewal undertaken by eleventh and twelfth 
century algebraists. The hypothesis of a Chinese origin therefore appears 
historically supeifluous and theoretically unfounded. 

Two sets of instruments, theoretical and technical, were then required 
to state the problem of the solution of numerical equations. On the one 
hand, a complete algebra of polynomials,13 a knowledge of the binomial 
formula for any positive integer power,14 a tested algorithm for extracting 
numerical roots, capable of being generalized; 15 on the other, an exten­
sion of the theory of equations for understanding second-degree equations 
or those that can be reduced to them; lastly, an introduction to the study 
of curves using algebra to deal with problems of approximation. 

If these combined means were already at the disposal of mathemati­
cians' it was due to the existence of two trends since the eleventh century 
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that aimed at reactivating algebra and extending its field. Moreover, 
the history of this science after the eleventh century is incomprehen­
sible if the existence of both trends is not sufficiently stressed. 

One was closely related to the application of arithmetic to algebra 
and indirect attempts to extend the notion of number; al-KarajI's work, 
pursued by his successors, like al-SamawJal, provided the first set of 
instruments noted earlier. The other, associated with attempts to advance 
algebra through geometry, quite naturally led to the algebraic study of 
curves, and thus enabled laying the foundations of algebraic geometry; 
marked by the names of al-Khayyam and Sharaf aI-DIn al-TusI, pro­
vided the second set of required instruments. These mathematicians, as 
we shall see, were instrumental in posing the problem of numerical 
equations. 

It is also probable that, confronted with the problem of finding a 
brief and elegant algebraic solution to third-degree equations, the same 
mathematicians, in the process of constituting its theory, were induced 
to find alternative numerical methods for a solution, numerical methods. 
The theoretical obstacle not only possessed a stabilizing influence, but 
a heuristic function as well. 

2. Al-Tusl already possessed a method to which the bulk of Viete's 
method is linked and the outline retained by historians needs to be 
modified once again. 

In other words, though al-KashI's method may be preferred to that of 
Ruffini-Horner, it was as if Viete's method necessarily had to precede 
that of the last two mathematicians. But whereas Ruffini and Horner 
rediscovered al-KashI's method using mathematics renovated by analysis, 
the method from which Viete drew most of his basic ideas was based 
on mathematics which remained, whatever is said, fundamentally the 
same. This poses a problem for the historian of Viete's thought. 

But to avoid embarking on a historical approach we have just 
criticized, we are obliged to pursue, at least briefly within the limits of 
this study, the problem in its field and context, i.e. al-TiisI's algebra. Here 
again we shall show the early stages of algebraic geometry. Let us start 
with an exposition of al-TiisI's method and its relation to that of Viete. 
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II 

In a well-known, often cited but soon forgotten passage, al-Khayyam 
(1048-1131) wrote 

The Indians possess methods for finding the sides of squares and cubes based on such 
knowledge of the squares of nine figures, that is the square of I, 2, 3, etc., and also the 
products formed by multiplying them by each other, i.e. the product of 2, 3, etc. I have 
composed a work to demonstrate the accuracy of these methods, and have proved that they 
do lead to the sought aim. I have moreover increased the species, that is I have shown 
how to find the sides of the square-square, quadrato-cube, cuba-cube, etc. to any length, 
which has not been made before now. The proofs I gave on this occasion are only 
arithmetic proofs based on the arithmetical parts of Euclid's Elements. 16 

AI-Khayyam's attempt was neither the only one nor the first. AI-BItiinT 
(973-1050), belonging to an earlier generation of mathematicians, had 
at least composed a work comprising one hundred in-folio pages 
whose exact title is: The extraction of cubes and higher roots in the 
degrees of calculation (Fi Istikhriij al-Uiib wa-a{ilii c mii wariiJahu min 
mariitib al-~isiib).17 

Until now this information had rightly been taken at face value: an 
indication of past remains. It is true that both works remained undis­
covered; of one, we only possess a summary or "abstract", and of the 
other, only the title. The summary, though concise, enables one to believe 
that al-Khayyam possessed a method for extracting roots to any degree, 
and that this method was based on the expansion of (a + b + ... + k)", 
n E N, and therefore afortiori, on knowledge of the formula of binomial 
expansion and the law for formulating the table of coefficients. In six­
teenth-century terms, al-Khayyam possessed a method for extracting roots 
from "pure powers", in fact the same as that of Stifel and Viete for the 
same powers. Naturally, for want of other documents which develop 
al-Khayyam's ideas in similar or different terms, the latter conclusion 
remains hypothetical. With al-TusT's work, however, the hypothesis is 
confirmed both by the method he used and by his silence. 

AI-TusT's method is partly based on knowledge of the expansion men­
tioned by al-Khayyam, and presented moreover as the generalization 
of the extraction of the root of "pure powers" from "affected powers", 
to use the same language. In fact, only the general case, that of affected 
equations, interested al-TusT and the treatment of this case apparently 
generalized work accomplished earlier by al-Khayyam. His silence is 
nonetheless significant; we mean that al-TusT made no mention of the 
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particular problem of xn = N, n = 2, 3, whose solution is knowingly 
left to the reader. It was as if this extraction was within the grasp of those 
who studied mathematics at that time: al-TusI then claimed for himself 
the general problem of affected equations. 

Can one affirm, in spite of that, that al-TusI had himself generalized 
al-Khayyam's method? Lack of knowledge about the intermediaries 
between al-Khayyam and al-TusI makes attribution uncertain. Uncertainty 
does stem from another silence on the part of al-TusI: though he made 
no mention of an eventual inventor of the method, he did not claim 
its paternity for himself. No name is mentioned in the manuscript 
we possess. The use of tables 18 alone to expound his method indicates 
nothing in particular, insofar as, since the eleventh century at least, 
arithmeticians like Kushyar ibn-Labban used al-TusI's tables to extract 
square and cubic roots. So that all that can be said is that the method 
al-TusI used, called al-TiisI's method, was formulated after al-Khayyam 
but before al-TiisI, or by either of these mathematicians, and in any 
case in the algebraist trend. 19 

But what does this method consist of? 
AI-TiisI used the same approach throughout his work: he first dis­

cussed the existence of roots for each equation, then set forth how to 
solve the numerical equation corresponding to the equation just discussed. 
To recapitulate all the equations solved by al-TiisI is beyond the scope 
of this book. We shall give enough examples for a complete descrip­
tion of his method, and in the first place, we shall limit ourselves to a 
paraphrase of al-TiisI's text (ed., 1986, I, pp. 25-30; ff. 46v-49r) at the 
risk of appearing longwinded. 

x2 + a1x = N 

with N = nolOm + n11Om- 1 + ... + nm. 

The ranks modified by roots determine [ ; ] intervals, [ ; ] is the integer 

part of ; , and is compared with k, the decimal order of a 1• We have 

two cases [; ] > k; [ ;] ~ k. 

1. First case [ ;] > k; example x2 + 31x = 112992. 

1-1. N is divided into 2-figure segments starting from the right-hand 



154 CHAPTER III 

side. The zeros above the figures in Table I indicate this parti­
tion. 

If the order of N = m, 5 here, then the number of digits is 6, 
and we therefore have three digits for the root x; and we have 

r = [ ~ ] = 2 and consequently a possible order for x. 

The order of a1 = 31 is 1 and r - k = 1. At the bottom of the 
table we write a 1102, here 31.102• 

Nl = N - x} - al Xl 

xl 
(2X1 +3 1) X z 

N t =Nl -x:-(2X1+31) x, 

xl 
(2 (Xl + x 2) + 31] xa 

(2X1 + 2x2 + 31) 10 

(2X1 + 31) 10 

(2xl + 31) 10· 
al l01 

TABLE I 

X' + 3 u = 112992 
a l = 31 

f(x)=x l +31x 

3 2 1 
- - - - - -

3 2 
- - - - - '-

3 

0 0 0 
1 1 2 9 9 2 

9 

9 3 
f- - - - - 1-

0 0 
1 3 6 9 2 

4 
1 2 6 2 

f- - - - - 1-

0 
6 7 2 

1 

6 7 1 

6 7 1 

6 7 1 
'-- - - - - -

6 3 1 

6 3 1 

3 1 
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1-2. We find the last digit of the root by determining the highest square 
contained in the last segment of N. Let 9 be this square - we set 
x, = 3.102• We carry xi, 31x, to the top of the table and subtract 
the whole from N. We thus obtain N - !(x,) = N,; where !(x,) = 
xi + a,x,. 

1-3. We set x = x, + y. It will giv(: 

xi + l + 2x,y + 31(x, + y) = N 

hence 

l(2x, + 31)y = N,. 

1-4. We divide N, like N, and use the same reasoning. We thus 

determine r, = [ ~' ]; m, the order of N,. We now turn to the term 

of the second member and place it at the bottom of the table 

(2x, + 31) 10 [~l. We note that the last digit of this number is set 
below the last figure of N, and it is higher. Therefore, since the 
square of y must be added to (2x, + 31)y, their sum remains higher 
than N,. 

We have therefore established that digit 3 is found in the last 
digit of the root. 

We therefore go forward one unit and seek y of the order 

[ ';' ] - 1. Here the order of y is equal to 1. 

For the order 

a 2.102 + 6· 102a· 10 = 104 

where 

a 2 + 60a = 102• 

We therefore divide 130 by 60 or 13 by 6, and obtain an approached 
value of y = X2 by omitting the terms of y order higher than 1 in 
N, and obtain X2 = 20. 

1-5. We carry x~, (2x, + 31)x2 to the top of the table and subtract it 
from N,. 

We thus obtain N, - x~ - (2x, + 31)x2 = N2. 
1-6. We start again and find X3 such that x = x, + X 2 + X3' 
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We have (Xl + X2 + X3)2 + 31(xl + X2 + X3) = N 

hence x~ + x3[(2xI + 2X2) + 31)]X3 = N2. 

We separate N2 into 2-figure segments and we determine an order 

m2 = 2, [ ~2 ] = 1. We see if order 1 suits X3' We write at the bottom 

of the table [2(XI + X2) + 31] 10. 
We repeat the corriparison with the order obtained by m2• But 

as the number obtained is greater than m2' we find that two is the 
second figure of the root. We then determine X3' 

N1 =N-/(x1) 

(a1 - 2Xl - "'.) "'-

N. = N-f(x, + x.) 
(al - 2x1 - 2x.- xal "'_ 

TABLE II 

N.=O =N -/("'1 + "'_ + xa) 

al -2"'1- 2",Z-"'_ 

al -2"'1- 2x• 
(lit -2"'1- 2 ",.) to 
(lit - 2X1 - "") 10 

(lit - 2"'1) 10 

(lit -2"'1) tot 

(lit - "'1) lot 
III tot 

",2 + 578442 = 2123'" 
a l = 2123 

/("') = ",2_ 2123'" 

3 2 1 

3 2 

3 

0 0 0 
5 7 8 4 4 2 

5 4 6 9 - - - - - 1-
0 0 

3 1 5 4 2 

3 0 0 6 - - - - - 1-
0 

1 4 8 2 
1 4 8 2 

- - - - - I-

I 4 8 2 
1 4 8 3 

1 4 8 3 
1 5 0 3 

I"- - - - - -
t 5 2 3 

t 5 2 3 
I"- - - - - -

t 8 2 3 
2 t 2 3 
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1-7. We shift the last line of the bottom table and find X3 of order O. 
We see that X3 = 1. 

1-8. We verify that N3 = N - x~ - [2(x) + x2) + 31]x3 = o. 
AI-TusT gives a comprehensive table, eliminated by the copyist, 

our reconstruction is based on the author's verbal description; on 
the side of the table we have only replaced what al-TusT writes 
in words by symbols. 

Second case. [~] ;;;;;i k. 

In the second case, [~] ;;;;;i k, to determine the first figure of the 

root, al-TusT proceeds either by dividing N by a), or by finding the highest 
square. Sometimes division indicates this figure, sometimes not at all. 
Otherwise, the method is identical. It is also used by negative coefficients 
with slight changes in notation. For instance, for r + 578442 = 2123x, 
we have the Table IV (al-TusT, ed., 1986, I, pp. 34-384; ff. 51'-52'): 

It is therefore clear that al-TusT applies his method to the equation 
X2 + a)x = N with a) E 7L. The method includes cubic equations, the 
main subject of his Treatise, with no change of fundamental ideas 
or notable modification in representation. Here are some examples 
(al-TusT, ed., 1986, I, pp. 78-89; ff. 76V-82j: 

x3 + aIr + azX = N. 

AI-TusT always distinguishes three cases. 

First case. [~] > k) and [~] > [~ ], k) and k2 being the order of 

a) and a2' respectively. 
Example: x3 + laz + 102x = 34345395. The discussion is the same as 
for the second-degree equation: transposing the earlier discussion to 
the case where n = 3. So from now on, we shall only give the tables. 

Second case. [~] < [~ ] and k < [ ~] with k) and k2 the orders of 

a) and a2 respectively. 
Example: ~ + 6r + 3 000 OOOx = 996 694 407. 

Third case. [~] < k) and [~ ] ~ k) as for example x3 + 30000x2 + 

20x = 3124315791. 
The method is the same except for changes imposed by the above 
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N 

xf 
3 (x} tal + taa) Xl 

TABLE III 

,Vl = N -fIx}) = N - xi -a}xt -aa X I 

x~ 
3 [(xf t 2x} tal + ta2l + (x} + tall xa] xa 

Na =N -/(xl + Xa) 

x~ 
3 [(xl + 2X} tal + taa) + (Xl + tal) Xa 

+ (Xl + tal + X2) Xa + (Xl + Xa + la}) X3 ] X3 

[(xl + 2Xl tal + taa) + (X} + tal) Xa 
+ (Xl + tal + Xa) X 2 + (Xl + Xa + tal) x31 

[(xl + 2X} tal + taa) + (Xl + tal) X 2 

+ (X} + tal + Xa) Xa] 
[(xl + 2 Xl tal + taa) + (Xl + tal) x2 

+ (Xl + tal + Xa) X 2) 10 

[(xl + 2xl tal + taz) + (Xl + tal) Xa] 10 
(xf+2x}tal+taa) 10 

(xf+ 2x} tal + taa) 102 

(x} tal + taa) 102 

tallO' + ta2102 

x3 + 12x2 + 102 X = 34345395 
a} = 12 
a2 = 102 

/(xl =x3+ 12x2+ 102x 

3 2 1 

3 2 

3 

0 0 0 
3 4 3 4 5 3 9 5 
2 7 

1 1 1 0 6 
- - - I-i- - i-I-

0 0 
6 2 3 4 7 9 5 

8 

5 9 I 0 8 4 
I- -

3 1 5 9 5 5 
1 

3 1 5 9 5 4 

I- - l-

I 0 5 3 1 8 

1 0 4 9 9 4 

1 0 4 9 9 4 

I- -
9 8 5 1 4 

9 2 4 3 4 

9 2 4 3 4 
- -

1 2 3 4 
4 3 4 

3 4 
3 4 

3 4 

conditions: here al-TiisI proposes to divide by the "number of squares" 
(the coefficient of x2) to obtain first the first figure of the root, or as 
he writes: 

"We set [in the table] the number of squares as divisor, the number 
as dividend, we extract the coefficient and we know its order". 
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N 

.a'f 
3 (xl t"I + ta2) Xl 

Nl =N -/(.a'l) 

Xl 

TABLE IV 

3 [xl + 2XI t"I + taz) + (xl + tal) Xz] X 2 

N .... N -/(Xl + .a'a) 

xl 
3 [(xl + 2xl t~ + ta,) + (xl + t"I) x, 

+ (Xl + tal + X,) x. + (Xl + X, + tal) x,] x, 

[(4 + 2xI tal + tas) + (Xl + tal) X, 
+ (Xl + t"I + .a'2) X. + (Xl + X, + tal) X,] 

[(xl + 2XI tal + tas) + (Xl + t"I) X. 
+ (Xl + t"I + X.) X.] 

[(xl + 2Xl t~ + ta.) + (Xl + tal) X. 
+ (Xl + tal + X.) X.] 10 

[(xl + 2xl t"I + ta.) + (Xl + tal) X,] 10 
(xl + 2xl t"I + tas) 10 
(xl + 2xl t"I + ta,) 10· 

(Xl t"I + ta,) lot 
t"I 104 + tas lot 

xI+6x+ 30oo000x = 996694407 
a l =6 
at = 3000000 

I(x) = xl + 6x + 3 000000 X 

3 2 1 

3 2 

3 

0 0 0 
9 9 6 6 9 4 4 0 7 

2 7 
9 5 4 

-
0 0 

6 9 1 5 4 4 0 7 
8 

6 5 8 3 4 4 
-

0 
3 3 1 2 0 0 7 

t 

3 3 t 2 0 0 6 

t t 0 4 0 0 2 

t t 0 3 6 8 

t t 0 3 6 8 

I-
t 9 7 2 4 
1 9 t 2 

t 9 1 2 
I-

t 6 
t 2 

Lastly, to show that ai-lusT applies his method to a polynomial 
function with coefficients in 7L, we shall take as a last equation: 

x 3 - aj~ - aiX - c = 0, 

only considering the first case [ 7] > k j and [ 7] > [ ~ ]. 
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Example: 

000 
X3 = 30~ + 600x + 29792331 

dealt with in Table V. 
These various examples show that al-TusT's method is well ordered 

and general. Though its generality is still implicit to a certain extent, 
probably for various reasons, we can still grasp its significance. AI-Tust's 
text is in fact highly condensed, as if it was originally intended for 
a certain style of teaching, and therefore necessarily accompanied by 
a spoken commentary. This is the state of the only manuscript so far 
identified and transcription errors do not facilitate its comprehension. 
Other intrinsic reasons complicate the task. Perhaps the implicit presence 
of notions as important as that of the "derivative" make the author's 
wording allusive. Lacking an autonomous status, unnamed, the notion 
itself and its presence, remain a problem to be solved rather than a means 
to a solution, as we shall soon see 

X3 + alx2 + a-zX = N. (1) 

We know the root is written 

x = a102 + ~10 + Y 

and al-TusT will determine, in succe&sion, a, ~, y. 
We designate by f the function of a real variable f(x) = x3 + alx2 + 

a-zX. A comparison with the decimal order of the root found and the 
order of coefficients of (1) enables us, as we have seen, to control the 
choice of coefficients of the various figures of the root. The determi­
nation of these same figures in the strict sense and almost mechanical 
is as follows: 

The determination of XI = al02 is carried out either by division, or 
by finding the highest cube contained in N, depending on the case. 

We write X = XI + X2 and seek to determine X2' According to (1) we 
have 

where 
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TABLE V 

.... - 30x· - 600.1' = 29 792 331 
~=-30 
a.=-6oo 

161 

1(.1') =..-3 - 30x'-6OOx 

N 

xl 
+3(txl~+ta.) Xl 

.vI =N -/(xl ) =N -xf+~xr+a2Xl 
xl 
3 [(xl- 2xl tal - ta.) + (Xl - tal) x.] X. 

N,=N-/(xl+x.) 

xl 
3 [(xl- 2Xl tal - tas) + (Xl - tal) X. 

+ (Xl - tal + X.) X, + ((Xl + X.) .- a)) XI] XI 

[(xl - 2.1'1 tal - taa) + (Xl - tal) X. 
+ (X) -tal + X.) X. + ((X) + X.) - al) XI] 

[(xl- 2X) tal - ta.) + (X) - tal) X2 

+ (XJ - tal + X.) X.] 
[(xl- 2xl t~ - tal) + (X) - tal) Xa 

+(xl-tal+x.) xJ to 

[(xl- 2Xl t~ - ta.) + (Xl - tal) x.] to 
(xf-2xJ t~ -ta.) to 
(xl-2xl tal -ta.1 t02 

tXl~ 102 + ta. t02 

tas 102 
tal lOt 

3 

0 
2 9 
2 7 

2 
- -

5 

5 
~ -

- -

i-- -

8 
r-- -

3 2 1 

3 2 

0 0 
7 9 2 3 3 t 

8 8 

0 0 
6 7 2 3 3 t 

8 
3 7 6 

0 
2 8 8 3 3 t 

t 
2 8 8 3 3 

9 6 t 1 

9 5 8 

9 5 S 

8 9 6 
8 3 8 
3 2 

3 2 

2 
t 
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Nl is determined by the choice of Xl' AI-lusT obtains an approached value 
for X2, that is x~ by omitting in Nl terms of X2 of a higher order than 1, 
and obtains 

(2) 

I' designates the derivative function of /'. We now write X = «Xl + x~) 
+ X3) and seek to determine X3' We set 

N2 = N - I(XI + x~) = 3(XI + X~)2X3 + 2a l(xl + X~)X3 + a~3 
+ 3(xl + x~)xi + x~ + x~, 

we use N2 to determine X3 in the same way we used Nl to determine 
x~. In other words, the method is general, and if ai-lusT only applies it 
to third-degree or lesser equations it is insofar as it constituted the 
theory of equations. The general case requires no other notions unknown 
to the author. Let the equation be 

(3) 

and set 

f(X) = x" + alx"-l + ... + an_IX, 

the function is derivable several times like all functions studied by 
al-lusT. The interval to which the root corresponds may be known, let 
X E [lOr, lOr+l], X is therefore of the form polOr + PllOr-1 + ... + Pr 

and such that r = [:] where m is the decimal order of N. 

We determine Xl as above, that is, either by division or by finding 
the highest integer of nth power contained in N. 

We set Nl = N - I(xl) and X = Xl + X2, Nl = g(X2) , where g is a 
polynomial in X2 of degree n - 1. We obtain the approached value of 
X2' x~ defined by 

Nl = nx7-lx~ + al(n - 1)xr2x~ + ... + 2an _2XIX~ + an_1X~, (4) 

The derivative of I at point Xl is recognized here and 

, Nl 
X2 = !'(xl)' 

(5) 

We operate by successive iterations. Let Xl' X;, ... , X~_l such that 
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x = XI + X~ + . . . + X~_I + Xk k = 2, . . . , n 

an approached value of Xk:X~ is given by the formula 

where 

Nk = N - f(x I + x~ + ... + x~ -I) 
Xk -I = XI + x~ + ... + x~ -I' 
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(6) 

SO an approached value of X will be XI + x~ + ... + x: where x~ are 
given by the formula (6). 

We therefore see that generalization does not require the introduc­
tion of new concepts not already used in the example aI-lUsT studied. 

We should not be surprised by (4). In fact, if f is a polynomial of 
degree n, 

f(x I + X2) = f(x l) + xJ'(xl ) + 1 f"(XI) + ... + ~ (7) 

and similarly 

f(XI + x~ + ... + X~_I + xk) (8) 
= f(XI + x~ + ... + X~_I) + XJ'(XI + x~ + ... + X~_I)+ ••• + XZ 

which explains formula (6). 
But when we argue in terms of the "derivative" are we not surrep­

tiously introducing a meaning alien to al-lUsT's theory? We shall return 
to this problem; for the time being we only need to remark that: 

(1) In all these examples, and in a perfectly regulated way, al-lUST 
systematically uses for divisors expressions that correspond algebraically 
to the first derivative. 

(2) In this field, even if functions are not yet explicitly mentioned, 
the idea is there, especially when it concerns determining the positive 
integer root of a numerical equation using a method of successive 
approximations. On the other hand, even if aI-lUsT only sought positive 
integer roots, his method is capable of obtaining negative roots of (1) 
as well. It is sufficient to apply it by changing f(x) to f( -x). 

(3) As we shall see, the algebraic expression of the "derivative" is 
used throughout the discussion of the problem of the existence of roots 
of an algebraic equations. AI-lUsT always treats numerical equations 
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as examples of algebraic equations for which the existence of roots had 
been demonstrated earlier. 

Before tackling these questions, that is before pinpointing the solution 
of numerical equations in al-lusT's algebraic work, let us examine the 
relation between al-lusT's method and that of Viete. 

III 

Viete's work on numerical equations is just as difficult to grasp as 
that of aI-lusT. As we said, aI-lusT used the method as part of acquired 
mathematical knowledge. It would however be vain to seek in his work 
by whom and how this knowledge was transmitted. The substance of 
the method resides in the tables. But apart from some justification 
of the comparison of decimal orders, the expansion of the formula 
(a + b + ... + kt, n = 2, 3, division, and terms to be written in the 
table, the text remains silent about al-lusT's personal contribution and 
what he might have borrowed from his predecessors. 

We might have expected a different situation with Viete, but this is 
not the case. Apart from similar justifications, barely more explicit than 
those of ai-lusT, and though his work was printed and not a manu­
script, we only find general considerations about the "analytical way". 

In both cases, to know the inventor is of less interest from a 
biographical viewpoint than a real problem of interpretation: what 
mathematical concepts were elaborated to invent this method? As far 
as Viete is concerned, it was precisely on the question of these concepts 
that opinions diverge. The conflict between interpretations started 
in the last century; to be convinced we only need to quote the names 
of some eminent historians: Hankel, Ritter, Cantor, Enestrom and 
Tropfke. 

Viete's text is of little help and the essential is to be found once 
again in the tables. Nonetheless this text informs us that the solution 
of "affected powers" is based on the same method as that of "pure 
powers".20 

The solution is "analytical", i.e. it follows the converse approach to 
that used for the formation of affected powers by respecting the place, 
order, increase and decrease of coefficients as well as those of the 
unknown quantities.21 

If these considerations resemble those of aI-lusT, though expressed 
in a language we know, one significant difference between both math­
ematicians must strike us first of all. Whereas aI-lUST starts by proving 



NUMERICAL EQUATIONS 165 

the existence of one or more positive roots of equations, of which numer­
ical equations are an example, Viete never poses this problem in his work 
and presents the numerical equations to be solved with preliminary 
justification. This difference was, moreover, to be a subject of reflec­
tion for those who, victims of the myth propagated by Renan, Tannery 
etc., contrast the practical computational aspect of Arabic mathematics 
with the theoretical character of Hellenic and Renaissance mathematics. 
To study Viete's method, let us first consider the following equation: 

1 Q + 7 N equals 6 0 7 5 O. 

Like al-TOsI, Viete starts by differentiating between 2-figure segments 
starting from the right-hand side; instead of placing zeros above the 
square orders, he places dots below these same orders. 

He writes (ed., 1970, p. 174) in fact: "Ex adfecto igitur quadrato ut 
eruantur latera, sedes unitatum quadrata singularia metientium per binas 
alternas, ut in analysi puri quadrati, distinguuntur figuras punctis 
commode a dextra ad laevam subtus collocatis". He then gives the 
following tables. 

We conclude that if 1Q + 7N equals 60750, IN is 243 "in exactly 
the same way as that of the composition, Viete writes, but in the opposite 
direction". 

The best way to compare Viete's method with that of al-TOsI is to take 
Viete's example and apply al-TOsI's method: see Table VII. We then note 
that part 1 of 6 and two parts of (l,l') of 7; 2 of 6 (2,2') of 7; 3 of 6 
and (3,3') of 7 respectively, are equivalent. 

Furthermore, when we know that in his description al-TOsI not only 
gives combined tables omitted by the copyist, but partial tables as well, 
we are not surprised by the similarity. The only difference is that instead 
of writing zeros above the figures, Viete writes them below, and instead 
of putting divisors right at the bottom of the table for multiplication 
accurate to one coefficient, he sets them out at the top of the table. The 
difference is insignificant and does not affect the identity of either method. 

The similarity persists when we consider other cases of second-degree 

equations. For instance, in the case where [~] < k we saw that 

al-TiisI shifted the coefficient back in order to effect division. Viete 
expresses himself in equivalent terms when he writes (ed., 1970, p. 
175): "Coefficiens itaque ad succedentes sedes ordine revocanda est, 
donec sit locus divisioni, a qua tunc opus inchoare magis consentaneum 
est". Like his example, 954N + 1 Q equals 18 487. 
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But as the choice of divisors is important for interpreting the method, 
let us examine Viete's text for this example. In the third rule of his 
conclusion, on the composition of divisors, their order and place after 
extraction of the first partial side, Viete writes (ed., 1970, p. 226) 

Tertia cura esto, ut post eductionem primi lateris singularis & emendatam congrua sub­
ductione expositam resolutioni magitudinem, dividentes scansoriae in suo collocentur 
situ & ordine, tam superius quam inferius. Ac inferius quidem collocentur multiplices 
laterum elicitorum gradus parodici, ipsimet qui dividerent in analysi purae potestatis, ut 
pote 

In analysi quadrati, duplum lateris eliciti. 
In analysi cubi, Prima, dividens scansoria magnitudo. triplum lateris eliciti. 
Secunda, triplum quadratum ejusdem. 

NI =N -/(xl ) 

xl 
(2XI + al) XI 

N. =N -f(xi + xI) 
xl 
(2X1 + 2X. + a.) xI 

2x1 + 2x. + a1 

(2XI + 2X. + a.) 10 

(2x1 + a1) 10 

(2x1 + a.) 1()2 

TABLE VII 
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If we apply what Viete wrote to the example dealt with, we take 2xI 
for the part of divisors, not omitting of course to put them in their 
appropriate place and order. Then it remains to write down "magni­
tudes which are coefficients" with the same care among the higher 
divisors, in this case al> and lastly, for the sum of divisors we have 2xI 
+ a l to determine x2• 

It may therefore be affirmed that for second-degree equations, there 
is no notable difference between al-lusT's method and that of Viete. Is 
there any significant difference as far as higher degree equations are 
concerned? 

To examine this question we shall proceed in the same way as for 
the above example of the equation IC + 30N equals 14,356,197. We 
may expect to see the only important difference between the two methods 
emerge, and in fact, Viete's text leads us to assume that the sum of 
divisors for determining X2 will be 3x? + 3xI + a l in this case, and the 
nature of the method is somewhat altered. 

Therefore, if IC + 30N equals 14,3'56,197, IN and 243, following 
exactly the same path but in the opposite direction to that of the com­
position. 

To compare the methods of both authors, let us take the same example 
used by aI-lusT (Table IX). 

We note therefore that "the sum of the divisors" ceases to be iden­
tical when we apply aI-lusT's method to Viete's example. Whereas this 
sum is 1 260 300 in the second part of Viete's table, it is 1 200 300 
according to al-lusT's method. Similarly, in Part Three of Viete's table, 
it is 173 550, while it should be 175 090 for aI-lusT. What does this 
difference really imply? 

To understand this difference, let us return to the equation x3 + air 
+ azX = N, discussed earlier. We have seen in fact that 

where 

NI = (3x? + 2a lxI + a2)x2 + (3xI + al)xi + x~. 

For Viete, we have 

NI = (3xT + 2alxI + a2)x2 + (3xI + al){x2}x2 + x~ 



174 

xl 

Nl =N -I(xl ) 
xl 
3 (xl + tilt + Xl X:) X: 

Ns =N -/(xl + X:) 

.%1 

CHAPTER III 

TABLE IX 

3 (xl + tal + Xl X: + xl + Xl X 2 + Xl Xs + X 2 Xsl X. 

~+tllt+~~+4+~~+~~+~~ 
(xl + tilt + X1 X 2 + xl + X1 X 2 + XIX. + X2X,) 10 

(xl+tllt+ xlx2+4+xlxS) 10 

(Xf+ tilt + xIx:) 10 

(xl + tal) 10 

(xl+tal) lOS 

tilt lOS 

0 
1 4 

8 

f-- -
6 

5 
f--

- -

f-- -

4 
f--

0 0 
3 5 6 1 9 7 

6 

0 0 
3 5 0 1 9 7 

6 4 
7 6 1 2 

0 
5 2 4 9 9 7 

2 7 
5 2 4 9 7 

5 8 3 3 
5 8 3 3 
5 7 6 1 

4 8 1 

4 1 

1 

t 

where {X2} will be replaced by 10 in the division and al-TiisT preceding 
formula becomes, with Viete 

, N j 

X2 = (3xi + 2a j x j + a2) + 1O(3xj + a j ) • 

So, more generally if we return to equation (3), for Viete (5) becomes 

, Nj 

X2 = 
1 om- j 1 o(n-2)(m- j) 

r(Xj) + -2-f'(x1) + ... + (n _ I)! r-1(x1) 

from which we may deduce the formula corresponding to (6). 
This is the only important difference between the two methods, a 

difference which we insisted on taking to extremes to emphasize our 
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comparison. Nevertheless, in our opinion, Viete's method remains 
essentially close to that of al-TUsi. The problem at stake is not so 
overdetermined that it may induce such a similarity by itself. Procedures, 
expositions, details of presentation resemble one another to such a degree 
that one is entitled to ask the question: Was Viete in contact with this 
trend of Arabic mathematics, of which al-Tusi was one of its represen­
tatives? 

IV 

The current state of the history of algebra does not enable us to state 
clearly from what angle and by what means the work of these alge­
braists might have been known at the time of Viete. At the very least 
we may assume that if it was transmitted, it had entailed alterations; 
al-TusT's method is in one sense more "modern" than that of Viete. 

Of the two, al-Tusi's method is in fact closer to that of Newton and 
Raphson. But before drawing an overhasty conclusion, one particularly 
significant point needs to be clarified: the set of interpretations just stated 
may appear coherent from a mathematical point of view, it may even 
be discussed and verified; but it may appear excessive from a histor­
ical point of view. Do we in fact have the right to substitute the term 
"derivative" for algebraic expressions which, in another language, cor­
respond, nonetheless, to the notion of the "derivative"? In short, are 
we entitled to use a language other than that of the theory whose history 
we are intending to write? 

A satisfactory answer to these questions would force us to write 
another history: a history of the notion of the derivative. Not to identify 
a historical entity given once and for all in an ahistorical transcendency, 
but on the contrary to recognize a mathematical entity that is expressed 
in a necessarily obsolete language or style by which it is defined in the 
exposition and demonstration. An impossible task to achieve within the 
limits of this study, since it implies reviewing the mathematical thought 
of one of the greatest schools of Arabic mathematics which includes 
names as renowned as Thabit b. Qurra, Ibrahim b. Sinan, Alhazen, al­
Quhi et al. 

It suffices here to show how al-Tusi systematically applied the notion 
of the "derivative" elsewhere in his work. We shall therefore limit our­
selves to showing that al-Tusi thought "function", but systematically used 
another form of this notion which will later be named the derivative. 
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The significance and place of his method for solving numerical equations 
will then be understood. To illustrate this thesis, let us return to his 
algebra. 

AI-TusT's treatise is, as we said, a treatise on equations whose subject 
is inscribed in its title. More precisely, it is the elaboration of the algebra 
of third or lower degree equations stated verbally. Furthermore, al-TusT 
(1986, I, pp. 16-17; ff. 42V-43r) gives al-Khayyam's classification: 

(1) x = a (2) X- = a 
(3) x2 = ax (4) ~ = ax2 

(5) x3 = ax (6) x3 = a 
(7) X- + ax = b (8) ax + b = x2 

(9) x2 + a = bx (10) x3 + ax2 = bx 
(11) ~ + bx = x3 (12) x3 + ax = bx2 

(13) x3 + bx2 = a (14) x3 + a = bx 
(15) a + bx = x3 ( 16) x3 + bx2 = a 
(17) x3 + a = bx2 (18) a + bx- = x3 

(19) x3 + ax2 + bx = c (20) a + bx + cx- = x3 

(21) x3 + a + bx = cx- (22) x3 + ax2 + b = cx 
(23) a + x3 = bx + cx- (24) x3 + ax2 = bx + c 
(25) x3 + ax = bx2 + c. 

The history of this theory is written elsewhere, here we only need 
to recall al-TusT's main approaches: 

1. To solve equations, he divides them into two groups: one contains 
equations which always have solutions (al-TusT gives them); the other 
corresponds to equations with solutions only under certain conditions. 
He then undertakes the discussion. 

2. He reduced the equations to be solved to other equations whose 
solution is known using the affine transformation x ~ x + a or 
x ~ a -x. 

3. To solve the equations, he examines the maximum of algebraic 
expressions. He takes the "first derivative" of these expressions which 
he cancels, and proved that the root of the equation obtained, substi­
tuted in the algebraic expression, gives the maximum. 

4. He examines neither volume nor surface "maxima", but "limits". 
5. When he has found one of the roots of a cubic equation, to 

determine another root he would sometimes study a second-degree 
equation which is only the quotient of the divisor of a cubic equation 
by (x - r), where r is the root found. In other words, he knows that the 



NUMERICAL EQUATIONS 177 

polynomial ax3 + bx2 + ex + d is divisible by (x - r), if r is a root of 
the equation ax3 + bx2 + ex + d = O. 

6. He might sometimes encounter a second-degree equation of a 
type not yet studied, for example x2 - bx = c; he then reduces it by 
affine transformation to a type of known equation. 

7. When he has examined the equation, he attempts to determine 
the higher and lower limit of its roots. 

8. If similar equations are grouped together, for example, ax3 + bx 
= c, ax3 + c = bx, ax3 = bx + c, which are equivalent to ax3 + bx + c 
= 0, we can then find a posteriori the formula named after Cardano. In 
other words, this formula exists on specific occasions, but not globally 
in the case of real roots. 

What we have just said about al··TusI's basic approaches will enable 
us to explain how the method of numerical solution was invented, and 
better still, how this method employed the notion of derivative. But some 
of the above affirmations may have been surprising; we are fully aware 
of their import, and first we need to produce evidence. And as the only 
convincing proof is to let al-Tusl's text speak for itself, we shall take 
three examples from his work. The first, to show the algebraic study 
of curves, the second to develop a discussion which announces Cardano 
by the presence of the formula named after Cardano, the third to reveal 
how affine transformation, divisibility and the derivative are combined 
in the solution of the equation. 

1. To solve the equation x3 = ax + b 22 

In his introduction al-Tusl has already given: 
- The equation of the parabola in relation to two perpendicular axes, 

where one is the axis of the parabola and the other the tangent at the 
summit of the parabola. 

- The equation of the hyperbola in relation to two perpendicular 
axes where one is the axis of the hyperbola and the other the tangent 
of the summit of the hyperbola. 

- The equation of an equilateral hyperbola in relation to its asymp­
totes. 

To solve the proposed equation, he proceeds as follows. Let AB = 

-.ra, A C = b 2 = .!!.. . Construct parabola P with summit A and the latus 
AB a 

rectum - double the parameter - -Va; hyperbola E with summit A and 
a transversal diameter AC (see figure). 
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AI-rUsT first proves that the two conics intersect one another at a point 
other than A. His proof is as follows: the equation of P (see below) 
gives AS2 = BM2, hence 

AS = BM = AN = NM; 

equation E gives 

NC x AN = QN2, but NC x AN > AN2 = NM2 

hence 

QN> NM. 

which shows that M is inside E. Now take AF such that 

AF> 4AB 

and 

/ 
/ 

/ 
/ 

/ 
/ 

/ 
/ 

/ 
/ 

/ 
/ 

/ 
/ 

/ 
/ 

/ 

c 

x 
by the equation of the parabola, we have 

AF x AB = RF2 > AC2 hence RF > AC or AK > AC 

hence 

2AK> KC> 2AC. 

(1) 

(2) 

(3) 

(4) 

(5) 
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With the equation P and (3), we obtain 

Rl(2 AF AF 
RP = AF· AB = AB > 4 

which gives with (5) 

RK> 2RF= 2AK> KC; (6) 

but as AK x KC = KS'2 (the equation of E), we deduce that RK > KS', 
which proves that R is outside E, where P and E intersect each other 
at point D. I say that AZ is the solution sought. In fact, the equation of 
P and E give 

hence 

hence 

hence 

AB AB DH AZ DZ 
AZ = DH = AH = DZ = CZ 

AB AZ DZ 
AZ = DZ = CZ 

AB2 AZ 
AZ' = CZ 

AB2 X CZ = AZ3 

an equality that may be expressed as 

AB2 x AC + AB2 X AZ = AZ3, 

which proves that AZ is a solution. 
Using a different symbolism from that of al-TUsT, followed closely 

above, equations of P and E in relation to axes AX, AY are 

x2 = --Jay , 

x(~+x)=l 
where x(x3 - ax - b) = o. If we eliminate the trivial solution x = 0, we 
obtain our equation. 

Al-TusT's exposition leads us to conclude: (1) the intersection of the 



180 CHAPTER III 

parabola and hyperbola is proved algebraically, i.e. with curve equations. 
(2) At this stage it is possible to believe that al-TusI was trying to solve 
the cubic equation geometrically. The use of terms such as "inner" and 
"outer" in his proof may reinforce this conviction. If we take a closer 
look, we are led to another conclusion. In fact al-TusI was not in the 
least obliged to consider the figure, and he used curve equations. This 
usage is clear in the above and following examples. Moreover, as he 
works in the positive field and as the overall configuration of curves is 
absent, the terms "inner" and "outer" correspond, in al-TusI's usage, to 
the greatest and smallest. More precisely, what we have here is not 
geometry but a geometrical intuition of the argument of continuity. 
Expressed in terms different from those of al-TusI, the author wants to 

show, given f(x) = .1 x2; g(x) = ~X2 + ~ X , a > 0, that if there 

exists a and ~ such that (f - g)(a) > 0 and (f - g)(~) < 0, then there exists 
a point Y E ]a, ~[, such that (f - g)(y) = O. The "geometrical" intuition 
used by al-TusI is therefore based on a notion of continuity of (f - g), 
f and g continuous. 

2. To solve the equation x3 + a = bx 23 

AI-TusI first states that x2 must be smaller than b, and then writes 
the eq~ation of the form x(b - x2) = a. More precisely, he assumes that 
b = area of the square AC (see Figure 1), x2 = area of the square AY, 
then the equation becomes AT[CY] = a, with [CY] = area AC - area 
AY = (AB + AT) x BT. He is then led to study the maximum of 
x(b - x2) = AT[CY] with 0 < AT < AB. He then gives the following lemma: 

c 

y 

R 

A H T B 

Fig. 1. 



NUMERICAL EQUATIONS 181 

LEMMA. The area of the square AR = 1/3 of the area of the square AC, 
then AT[CY] reaches its maximum for AT = AH. 

(1) He assumes AT> AH and proves that AH[CR] > AT [Cf] as follows, 
we have 

[CR] x AH = [CY] x AH + [YR]AH, 

[CY] x AT = [CY] x AH + [Cf] x HT. 

Since area AR = 1/3 area AC = AH2, we obtain 

[CR] = (AB + AH)BH = 2AH2. 

On the other hand, we have 

(1) 

(2) 

(3) 

(AT + AH) x AH = (TH + 2AH) x AH > 2AH2. (4) 

taking account of (3) 

(AB + AT) x BT = [CY] < [CR] = 2AH2. (5) 

(4) and (5) give 

hence 

(AB + AT)BT < (AT + AH) x AH 

BT AB + AT BT AH 
TH x AT + AH < TH x BT 

which gives [CY] x HT < [YR] x AH. From (1) and (2), we finally 
obtain [CR] x AH > [CY] x AT. 

(2) He assumes AT < AH and undertakes a similar proof to the 
above. He then returns to the equation and distinguishes three cases: 

3 

nCR] x AH < a] ¢:::> [ 2 (~) '2 < a ] ; 

the problem is then impossible 

[CY] x AT < [CR] x AH < a 

whatever T belongs to AB. 
3 

nCR] x AH = a] ¢::> [ 2 ( ~ )"2 = a ] ; 

(1) 

(2) 
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1 

the problem has a unique solution, i.e. (~r. The proof given is a 

check. The unicity results from the lemma. 
3 

[[CR] x AH > a] ¢::} [ 2 (~r > a ] ; (3) 

the problem has two solutions, one smaller than AH, the other greater. 
Since [CR] x AH is greater than a, there exists a positive number K 
such that 

[CR] x AH = a + K. 

AI-rusT then examines the equation 

x3 + K = HQ X x2 

(6) 

with QA equal to 2AH (see Figure 2). AI-rusT had studied this equation 
earlier. Let HL be its root, i.e. 

HL3 + K = HQ X HL2 

taking HT = HL, it may be written as 

He x QT= K. 

.-------~c 

f-----,R 

a X J A T M H L B 

Fig. 2. 

AI-rusT justifies this notation by the affine transformation 
1 

(7) 

x ~ (~r - x. He wants to prove the existence of the smallest root, 
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He first proves: 

HL, i.e. HT is smaller than AH. 

In fact, we have, successively 

[CR] x AH = 2AH3 

AH2 X AQ = 2AH 3 

[CR] x AH = AH2 x AQ = 2AH3 

and on the other hand 

2BH x AH + BH2 = [CR] = 2AH2 

hence 

BH<AH. 

We then take AM = BH; we have 

AM2 + 2AM x AH = MH2 

but 

2HM x AH + 2AM x AH = 2AH2 

hence 

AM2 + 2AM x AH = 2HM x AH + 2AM x AH 

which gives 

hence 

AM2 = 2HM x AH, 

HM AM AM 
AM = 2AH = AQ 

Let XQ = AM and Xl = MH, then (10) is written 

Xl XQ 
XQ = lH 

hence by multiplying both members by lQ ;QXQ : 

lQ + XQ Xl lQ-+ XQ XQ 
XQ x XQ = XQ x lH 

183 

(8) 

(9) 

(10) 
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which gives after simplification 

JQ2 x JH = BH2 x BQ = 2AH3 > K 

which gives, according to (9) and (7) 

HL < HB < AH.24 

Justification made, ai-lusT continues as follows 

hence 

[CR] x AH = [CR] x AT + [CR] x HT, 

[CR] x HT = 2AH2 x HT, 

2AH2 x HT = 2[RY] x HT + 2AT2 x HT, 

2[RY] x HT = 2(HT x AH + HT x AT)HT, 

[CR] x AH = [CR] x AT + 2AT2 x HT + 2HT2 x AH + 2HT2 x AT 

= [CR] x AT + [RY]AT + HT2 x QT 

= [CY] x AT + HT2 x QT 

but 

[CR] x AH = a + K and HT2 x QT = K (see (6), (7)) 

hence 

[Cy] x AT = a; 

i.e. (b - AT2)AT = a, which proves that AT is a root of the equation, 
smaller than AH. 

- When we examine al-lust's proof, we observe that the auxiliary 
equation x3 + K = HQ X x2 is obtained by the first equation using the 

1 

affine transformation x ~ ( ~ )'2 - x. 

To obtain the root of the first equation we must of course subtract 
1 

the root of the auxiliary equation from (~) '2. Which is what 

al-lusT did. 
- To find the other root of the equation greater than AH, ai-lusT 

solves the equation x3 + HQx2 = K obtained from the initial equation 
1 

by the affine transformation x ~ ( ~ )'2 + x. 
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When he has examined the equation and found the root, al-TUsT adds 
1 . 

( ~ t to it to obtain the root sought. 

- AI-rUsT's discussion may be compared with what that of Cardano 
for the same equation. 

x3 + a = bx Ars magna, ch. XIII. 

AI-rUsT first discusses the (positive) roots of the equation x3 + a = 
bx (a ~ 0, b ~ 0). He first notes that any positive solution of this equation 
must be lower or equal to b1, since if Xo is a root, we obtain 

x~ + a = bxo 

hence 

hence 

on the other hand, this root must verify the equality 

bx - x3 = a. 

AI-rUsT seeks the value where y = bx - x3 reaches its maximum and finds 
1 

x = ( ~ )'2 by cancelling the first derivative. This maximum is therefore 

There exists a positive root if and only if 

3 

( b)'2 b3 a2 

a ~ 2"3 <=> 27 - 4 ~ 0. 

The role of the discriminant D = ~; - ~ is thus established and 

elaborated algebraically for the study of the cubic equation. 
To confirm the set of propositions advanced earlier, let us only 

examine two cases from al-rUsT's discussion of the following problem. 
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3. To solve the equation x3 + a = b:il + ex 25 (1) 

We shall follow his discussion by keeping close to al-TusT's text. 
He distinguishes three cases: 

I-b=..Jc. 
He first proves that the problem is impossible if a > b3• Let 

AB = {C 
RC = b = AB. 

Assume the problem possible, and distinguish two cases 

D A H B R c 

1. BD is a root> AB. Substituting in (1) we obtain 

BD3 - AB X BD2 = AB2 x BD - a 

hence 

AB2 x BD - BD2 x AD = a; 

on the other hand, we have 

AB2 x BD - AB2 x AD = AB3 

hence 

AB3 - a = (BD2 - AB2) x AD = (AB + BD) x AD2 ~ 0 

hence 

2. BH is root < AB. Similarly as in the previous case, we find that 

a - AB2 x BH = BH2 x AH, 
AB3 - AB2 x BH = AB2 x AH 

hence 

hence 
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In both cases where the problem is possible, we should have a ::;; AB3 

= b3• 

AI-lusT then examines the following three cases: 
(1) a> AB3; we have seen that the problem is impossible. 
(2) a = AB3; there is one solution AB. AI-lusT's demonstration is a 

simple verification. 
(3) a < AB3; there are two solutions. 
In fact, let BK = AB (see Figure 3) and the equation 

x3 + AK x2 = AB3 - a (2) 

T,.--------, 

A H B K 

Fig. 3. 

an equation studied earlier in aI-lusT's treatise. Let AD be the solution 
of (2), then BD is the solution of equation (1). In fact as AD is the root 
of (2), we obtain 

but 

AD2 x DK = AD x AD(DB + AB) = [TM] x AD 

then (3) is written 

[TM] x AD + a = AB3; 

we then have, successively, 

[TM] x AD + AB2 x AD + a = AB3 + AB2 x AD, 
BD2 x AD + a = AB2 x BD, 
BD2 x AD + DB2 x AB + a = AB2 x BD + DB2 x AB, 
BD2 x BD + a = AB2 x BD + BD2 x AB, 

(3) 
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which proves that BD is a root of the equation sought. AI-lusT then gives 
additional information about the root BD: BD has a higher limit. 26 In fact, 
we have seen (3) that 

AB3 - a = AD2 x DK 

hence 

AD2 x DK < AB3; 

as DK > AB we obtain AD < AB, hence 

DB = AD + AB < 2AB. 

To find the other solution, aI-lusT takes the equation 

x3 + AB 3 - a = AK x x2. (4) 

If AH is a root of (4) (AH is smaller than AB according to aI-lusT's earlier 
study on this type of equation (see Figure 4», then BH is a root of 
equation (1). 

T..--------, 

o A B K 

Fig. 4. 

In fact AH being a root of (4) we have 

AH2 x HK = AB3 - a, 

but 

AB3 = AB2 x BH + AB2 x AH 
= AB2 x BH + BH2 x AH + [TM] x AH 
= AB2 x BH + BH2 x AH + (AB + BH)AH2 

= AB2 x BH + BH2 x AH + AH2 x HK; 

(5) 
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on the other hand, from (5) we have 

AB3 = a + AH2 x HK 

hence 

AB2 x BH + BH2 x AH = a 

hence 

BH3 + a = AB2 x BH + AB x BH2 

which proves that BH is a solution of (1). 
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AI-lusI proves in a similar way to the one used in the case of the 
first root that BH has a lower limit. 

REMARK. In the case where there are two solutions, from equation 
(1) and with these two affine transformations 

x~x+AB 

x ~AB -x; 

al-lusI obtains, respectively, 

x3 + AK x2 = AB3 - a 
x3 + AB3 - a = AK r. 

He adds the root of the first transformation to AB, and subtracts the 
root of the second to obtain the roots sought. 

II-b>{;; 

Let AB = {C, BC = b and x = BH; equation (1) is written 

BH2 x BC - BH3 + AB2 x BH = a. 

AI-IusI is induced to study the maximum of the expression 

br - x3 + cx = BH2 X BC - BH3 + AB2 x BH. 

AI-lust's result is given by the following lemma. 

LEMMA. Let the second-degree equation be 

2 1 -3" BC·x +3" AB2 = x2; (6) 
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let BD be the root of this equation, then whatever H different from D, 
we have: 

BH2 X BC - BH3 + AB2 x BH 
< BD2 x BC - BD3 + AB2 x BD. 

AI-TUs) first proves that AB < BD < BC. 
We have seen according to (6) that BD is the sum of 

2 
XI =3"BC 

1 AB2 
X2 =3 BD 

Then if BD = AB, we obtain from (6) 

AB2 =..£ BC x AB + .l AB2 > AB2 
3 3 

(7) 

(8) 

(9) 

which is absurd. If BD < AB, we have from (9) X2 > ~ AB, and on the 
2 

other hand, from (8): XI > '3 AB where 

1 2 
BD = XI + x2 >'3 AB +3AB = AB 

which is also absurd. On the other hand, as BD > AB we obtain from 
(9) 

1 1 
x2 < '3 AB < '3 BC; 

then from (8), we obtain 

1 2 
BD = XI + x2 > '3 BC + '3 BC = Be. 

AI-TUs) goes back to the proof of the lemma, and distinguishes several 
cases 

(1) BC> BH > BD (see Figure 5). 

C H D A B , 

Fig. 5. 
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(7) is then written 

BH2 x CH + AB2 x BH < BD2 x CD + AB2 x BD, 
BD2 x CD + AB2 x BD 

= BD2 x CH + BD2 x HD + AB2 x BD, 
BH2 x CH + AB2 x BH = BD2 x CH 

+ (BD + BH)HD x CH + AB2 x BD + AB2 x DH. 

The difference between both members of (7) is therefore 

BD2 x HD - AB2 x DH - (BD + BH)HD x CH 
= (BD + AB)AD x HD - (BD + BH)HD x CH. 

To prove the lemma therefore implies proving that 

(BD + AB)AD > (BD + BH) x CH. 

however 

but 

2BD x CD = 2BD x DH + 2DB x CH, 
(BH + DB)CH = 2DB x CH + DH x CH, 

2BD x DH > DH x CH 

since according to (8), we have 

2BD > 2 . ~ CB > CB > CH 

hence 

2BD x CD > (BH + DB)CH, 
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but from (6), we obtain by substituting BD for x, all simplifications made 

2BD x CD = (BD + BA)AD (9') 

hence 

(BD + BA)AD > (BH + DB)CH. 

The lemma is therefore proved in this case. 

(2) BH = Be. 
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In this case (7) yields 

AB2 x BC < BD2 x CD + AB2 x BD; 

while the difference between both members yields 

BD2 x CD + AB2 x BD - AB2 x BC = 
BD2 x CD - AB2 x CD > O(BD > AB). 

Which proves the lemma in this case as well. 

(3) BH > BC (see Figure 6). 

I I .' H C D A B 

Fig. 6. 

In this case (7) is written 

AB2 x BH - BH2 x CH < BD2 x CD + AB2 x BD 

but as BH > AB, we have 

AB2 x BH - BH2 x CH <AB2 xBH -AB2 x CH =AB2 x CB 

but we have seen in case (2) that 

AB2 x BC < BD2 x CD + AB2 x BD 

which proves the lemma in this case. 

(4) AB < BH < BD. 
(5) AB = BH. 
(6) AB > BH. 

These cases are treated in the same way. 
Call the maximum found S; i.e. 

S = BD2 x CD + AB2 x BD 

and return to equation (1). AI-TusT distinguishes three cases 

(1) S < a - there is no solution; 
(2) S = a - it has one solution i.e. BD itself; 
(3) S > a - it has two solutions: one root higher than BD and the 

other smaller than BD. 
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To find the highest root 

(a) a> AB2 x Be. 

In this case there is a solution lying strictly between BD and BC. In 
fact let 

T 
I I 
C Q 

BY= BD } 
MY=CD 

D 

and let the equation be 

x3 + DM x2 = S - a. 

A 

Fig. 7. 

i 
B M y 

(10) 

(11) 

AI-liisT proves that if we add DB to the root of this equation, we obtain 
the root sought for equation (1). But before proving this proposition, 
he proves that the root of (11), i.e. DQ, is smaller than De. 

In fact 

S - a < S - BA 2 x CB 
= BD2 x CD + AB2 x BD - AB2 x CB 

= BD2 x CD - AB2 x CD = (BD + AB) x AD x CD 

but according to (9'), we have 

hence 

but 

hence 

(BD + AB)AD = 2DB x DC, 

S - a < 2DB x DC2 = DY X CD2 = CD2 x CM 

= CD3 + CD2 x DM, 

S - a = DQ3 + DQ2 x DM 

DQ< CD. 

AI-liisT then proves that BQ is the root sought. In fact according to 
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(9') we have 

(DB + BA)DA x DQ = YD x CD x DQ 

= YD x DQ x CQ + CM x DQ2 

= YD x DQ x CQ + DQ2 x QM + DQ2 x CQ 

= DQ x CQ x YQ + DQ2 x QM 

= (QB + BD)DQ x CQ + DQ2 x QM. 

Add BA 2 x BQ to the extreme members, we have 

BD2 x DQ + BA 2 x BD 

= (QB + BD)DQ x CQ + DQ2 x QM + BA 2 x BQ; 

add BD2 x CQ to both members, we obtain 

S = BD2 x CD + BA 2 x BD 

= BQ2 x CQ + BA2 x BQ + DQ2 x QM. 

But DQ being the root of (11) we obtain 

DQ3 + DM X DQ2 = S - a 

hence 

DQ2(DQ + DM) = S - a 

hence 

DQ2 x QM = S - a; 

substitute in (12) we finally obtain 

BQ2 x CQ + BA 2 x BQ = a 

hence 

BQ2(BC - BQ) + BA2 X BQ = a 

hence 

BQ3 + a = BC x BQ2 + BA 2 x BQ 

which proves that BQ is a root of equation (1). 

(b) a = BA 2 x BC. 

AI-TilsT proves by simple verification that BC is the root sought. 

(c) a < BA2 x Be. 

(12) 
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AI-TUsT finds the root of (11) and proves that if BD is added to it, we 
obtain the solution sought. To establish this proof, he first verifies that 
the root of (11) namely DT, is greater than CD. 

In fact as a < BA 2 x BC assumed, we have 

but 

hence 

hence 

S - a > S - AB2 x CB 

S - a = DT3 + DM X DT2 
S - AB2 x CB = BD2 x CD + AB2 x BD - AB2 x CB 

= CD3 + DM X CD2 

CD < DT. 

AI-TUsT then turns to equation (1). We know that S is, by definition, 
the value of the expression 

BC x r + AB2x - r for x = BD. 

We have therefore 

BC x BD2 + AB2 x BD = S + BD3. 

If we add BA 2 x DT to both members, we obtain 

AB2 x BT + BC x BD2 = S + BD3 + BA 2 x DT. 

If we add (TB2 - DB2)BC, we obtain 

AB2 x BT + BC x BT2 
= S + BD3 + BA2 x DT + (TB2 - BD2)BC. 

Lastly, adding 

'fJe = (TB2 - BD2)TC + (BD2 - BA2)TD 

to both members, we obtain 

AB2 x BT + BC x BT2 + 'fJe = S + BT3. 

But 

(13) 

(BD2 - BA2)TD = (BD + BA) x AD x TD = 2BD x CD x TD 
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according to (9') 

(TB 2 - BD2)TC 
= (TB + BD) x BT x TC = 2TC x BD x DT + DT2 x TC 

hence 

't/f, = 2BD x TD x DT + DT2 x TC 

= MC X TD2 + DT2 X TC = TD2 x MT. 

But as TD is the root of (11), we have 

S - a = TD3 + DM X TD2 = TD2 x MT 

hence 

't/f, = S- a. 

Substituting in (13), we obtain 

BT3 + a = AB2 x BT + BC x BT2 

which proves that BT is the solution sought and BT > BD; BT > BC. 
AI-TusT also studies the following problem: Given that AB, BC, then 

the family of roots of equations of the family (x3 + a = AB2 + BC x2; 
o < a < AB2 X BC), greater than BD, is the interval lBD, BTlL where 
BTl is the root of the equation r = AB2 + BC x. 

In fact, BTl is the root of no equation of the family, since we have 

AB2 x BTl + BC x Bri = Bn < Bn + a. 

On the other hand, for whatever BQ belonging to lBD, BTL there exists 
a such that BQ is the root of the equation x3 + a = AB2 x + BC r. 

In fact 

BT3 - BQ3 = BT3 - BQ2(BTl - TlQ) 

= (BT2 - BQ2)BTl + BQ2 x TlQ, 

BT3 - (AB2 X BQ + BC X BQ2) 

= AB2 X BTl + BC x Bri - AB2 x BQ - BC X BQ2 

= (Bri- BQ2)BC + AB2 x TlQ. 

By comparison, we find that 

BQ3 < AB2 X BQ + BC X BQ2. 
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Therefore, there exists a such that 

BQ3 + a = AB2 x BQ + BC X BQ2. 

We therefore conclude that in this case al-TusT was induced first to 
find the maximum of the expression bx2 + c~ - x3• To determine the 
maximum, he cancels 2/3bx + 1I3c = r, i.e. in another language, the 
first derivative of this equation. 

When he has shown that the root DB corresponds to the maximum, 
once found, namely S, he distinguishes three cases: 

(1) S < a, no solution, 
(2) S = a, one solution, 
(3) S> a, two solutions. 

The last case is divided into three cases 

(a) a > BA2 x CB. 

He transforms the equation by x ~ DB + x and finds ~ + DM r = 
S - a which he had examined earlier. 

To find the other root, he transforms the equation by x ~ BD - x 

(b) a=BA2xBC; 

the solution sought is BC. The proof is a verification. 

(c) a < BA2 x BC. 

He solves the equation transformed by x ~ DB + x to find one of 
the two roots. 

To find the other root he solves the one transformed by 
x~DB-x. 

v 

If by the geometric theory of cubic equations we mean using geometrical 
figures to determine the real roots of these equations, al-TusT goes far 
beyond this framework. The examples given in his own style show that 
his concern was an entirely different attempt. The geometrical figure only 
played an auxiliary role and al-TusT, far from limiting himself to it, 
thought "function" and studied curves by their equations. 

We have discussed elsewhere for itself this fundamental stage in the 
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history of algebraic geometry. It has been established that a history of 
algebraic geometry is inconceivable without a study of this trend of 
Arabic algebra, initiated by al-Khayyam and developed by al-TUsT, and 
still to be undertaken. 

It was with these algebraists that the use of the "derivative" in the 
discussion of algebraic equations was seen to emerge. It is common 
knowledge, however, that related to the search for maxima, the use of 
the "first derivative" was not new. Called on, however, for a particular 
example, its usage remained sporadic and only became an integral part 
of the solution of cubic equations with al-TUsT. The generalization of 
its usage was in fact determined by that of the theory of equations 
which was being elaborated at that time. One important difference: 
generalization was the result of progress accomplished in the field of 
algebra, and investigations by mathematicians whose activities extended 
to other fields. 

The works of BanU MUsa, Ibn Qurra, his grand-son IbrahTm ibn 
Sinan, al-QUhT, Ibn al-Haytham, and many other non-algebraists on 
infinitesilllal determinations, indirectly prepared the way for attempts 
such as that of al-TUsT. An informed and meticulous history of differ­
ential concepts before the beginnings by Newton and Leibniz would show 
to what extent we may affirm that the mathematicians cited earlier 
completed the study of these determinations. 

Their refusal to interpret algebraic.operations geometrically, manifest 
in BanU MUsa's work and reaffirmed by their successors, their discovery 
of new arithmetic laws for calculating surfaces and volumes, enabled 
them to generalize the concept of number. 

However, despite the obvious significance of their results, the calculus 
of infinitesimal determinations could not be transformed into differen­
tial and integral calculus as seen in Newton and Leibniz, since the lack 
of a comprehensive and efficient algebraic symbolism was a serious 
obstacle to this transformation. However, it was precisely this symbolism 
that made it possible to name the notion, present in mathematical 
research: the derivative. 

The question is still open however: how did al-TUsT systematically 
use an unnamed notion? The fact can only be explained outside the 
"infinitesimalist" tradition, and was only made possible by the exten­
sion of algebra itself. The simple enumeration and classification of 
equations, necessary for elaborating a theory of equations with which 
algebra had begun to merge, the search for a method for solving cubic 
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equations led to an extension of the field of application of the notion 
of "derivative" and the generalization of this application. 

The notion of the "derivative", the work of infinitesimalists extended 
by algebraists, was therefore doomed to oblivion because of the weakness 
of algebraic symbolism. We know moreover that this weakness persisted; 
even in the seventeenth century, algebraic symbolism was more adapted 
to differential concepts than algebra itself. The least we may therefore 
affirm is that mathematicians who had systematized the usage of a notion 
present, though unnamed, were capable of extending it to a neighbouring 
field of algebraic equations, i.e. the solution of numerical equations. This 
was the case of al-TOsT. 

So replaced in context - algebra - the solution of numerical equa­
tions brought out a meaning it had always possessed: to compensate 
for the absence of an algebraic solution, explicitly by radicals, for 
third-degree or higher equations. Even the specific presence if not global, 
of the so-called "Cardano" formula could not replace this solution. 
However, algebra contained conceptuai means for posing the problem 
of numerical equations of any degree. 

This algebra itself, al-TOsY's method for solving numerical equations, 
shows that the history of Arabic algebra and the Renaissance is still to 
be written. To stimulate this work we shall conclude with a conjecture 
for historians: this algebraic tradition - that of al-Khayyam and al-TOsY 
- survived and was known to sixteenth-century algebraists, of whom 
Viete was the most important. 

NOTES 

1. Harriot (1631), pp. 117-180. Herigone (1634), vol. 2, pp. 266ff. Oughtred (1652), 
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aliam excogitare adactus sum ... ". 

Newton expounded his method in a letter to Oldenbourg and Leibniz dated 26th 
July 1677; See Gerhardt (1962), pp. 179-192. See also his letter to Collins dated 20th 
June 1674: Turnbull (1959), pp. 309-310. Turnbull gives the references to other 
letters on the same problem. We know the method is to be found in De analysi per 
aequationes numero terminorum infinitas (1669), reproduced in Methodus flux­
ionum et serierum infinitarum (1671) and only published in 1736. The first edited 
summary is in Wallis (1685), pp. 381-383. See also Buffon's "Introduction" (1740) 
and Cajori (1911), pp. 29-30. Lastly, see Whiteside (1964), I, pp. 928ff. 



200 CHAPTER III 

3. Lagrange (1878), pp. 159ff. Mouraille (1768), Part 1. Fourier (1830). See also 
Cajori (1910-11), pp. 132-137. 

4. Horner (1819), Part 1, pp. 308-335 and also Smith (1959), 1, pp. 232-252. 
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approximation of numerical equations was published in the year 1600 by Vieta. 
Cardan had previously applied the rule of 'false position' (called by him 'regula 
aurea') to the cubic; but the results obtained by this method were of little value". 
Whittaker and Robinson (1926), see ch. 6, par. 41. Young (1843), pp. 248ff. 

6. Sedillot (1847), pp. 69-83. Woepcke (1854a), p. xix. To calculate the value of sine 
l' the equation X = (X3 + A)B must be solved; B is of a higher order than X. The 
method exposed by ShalabI is based on an idea common to a family of approxima­
tion methods: replace the initial equation by a linear or an approached equation as 
often as one wants. 

He sets it out as follows 

hence 

~ 1 
X= L tXt, 

k=O m 
B = bm 

hence, using the method of indeterminate coefficients, we have Xk for k = 0, 1, 2, 
... but then ak' b are integers, Xk are not usually integers. We then take the integer 

part and obtain 

This type of solution consists of "substituting the third-degree equation proposed 
by an infinity of linear equations". A detailed description of this method is to be found 
in Woepcke (1854a) and Woepcke (1854b) pp. 153ff. See also Hankel (1874), pp. 
290-292. 

7. Luckey (1948), pp. 217-274. To give a general summary of al-KashI's method it 
should be recalled that the author solves the equation X" - Q = O. He takes as a 
first approximation the highest integer lower than QI/", that is Xo = [Q""], and obtains 

hence 

hence 

Q = x" = (xo + XI)" 

X = Q"" '" Xo + Q -:-7 . 
nxo 
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hence Luckey showed that al-Kasht used Horner's table to calculate the coeffi­
cients for each transformed function. 
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of this work is by A. S. al-Demerdash and M. H. al-Cheikh (1967). A Russian 
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11. See Woepcke's translation: Woepcke (1851). 
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of historical research in this field and renders our knowledge of Arabic algebra and 
the Renaissance precarious. AI-Tust was not only cited by Arab algebraists but 
by historians as well. For instance, al-Kasht cited him in The Key to Arithmetic on 
the solution of cubic equations, p. 198. He was also cited by the famous Kamal al­
Din al-Farist in MS Shehid Ali Pasha 1972, Asiis al-Qawiicidftu~ul al-fawiioid ("The 
foundation of rules ... "). Several references show that some algebraists recognized 
the importance of al-Tust's contribution. For instance, the early thirteenth-century 
mathematician Shams ai-Din Ismacil ibn Ibrahtm al-Mardtnt attributed the inven­
tion of the "table method" to him, i.e. the numerical solution of cubic equations. 
See Ni~iib al-!tabr, MS Istanbul, Feyzullah, 1366. AI-Tust was no less unknown to 
ancient or modern biographers. Sarton wrote his biography and recalled that he 
composed "a treatise on algebra ... in 1209-10 [which] is only known through a 
commentary [talkhis] by an unknown author". See Sarton (1950), II, pp. 622-623. 
This fact was mentioned in Suter's bibliography earlier and in the MS in the India 
Office. See Suter (1900, p. 134). See also Brockelmann (1898), I, p. 472. AI-Tust 
is also known as the inventor of the Linear Astrolabe since the translations by Suter 
and Carra de Vaux. See Carra de Vaux (1895), pp. 464-516. Also Suter (1895), 
pp. 13-18 and (1896), pp. 13-15. Ancient biographers, at least those we were able 
to consult, cites al-Tust but without giving any important biographical details. See 
al-Qiftt (ed., 1903), p. 426. Ibn Khallikan (ed., 1978), p. 314 where we may read: 
"Shaykh Sharaf ai-Din al-Mu~affar ibn MuJ:tammad ibn al-Mu~affar al-Tus) is the 
inventor of the linear astrolabe called the stick". Tashkupri-Zadeh (1968), p. 392: 
"Sharaf aI-DIn, MuJ:tammad Mascud ibn Mascud al-MascudI [composed] a 'develop­
ment' [the opposite of a summary] in this discipline [Algebra]". As yet virtually 
nothing is known about his life. He lived in the twelfth century, taught in Damascus 
where the famous Muhadhdhab ai-Din ibn ai-Din al-l;Iajib was his pupil, and in Mosul 
where his pupils were Kamal ai-Din ibn Yunus and MuJ:tammad ibn cAbd ai-KarIm 
al-l;IarithI, and lastly, in Baghdad. From Tus in Khurasan, he probably died in the 
last quarter of the 12th century. 

Of his works, the following are known: Risiila ft ~anc al-as/urliib al-musarratt, MS 
Leiden 591 ("A Discourse on the linear astrolabe"); "A Reply to a geometrical 
question asked by his friend Shams ai-Din", cited by Suter; Risiiia ft al-lJattayn 
alladhayni yaqrubiini wa la yataqabaliini, cited by Brockelmann (1898), I, supp. 
Bd. p. 850, probably a treatise on asymptotes; lastly, the Algebra. 
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The only survlvmg copy of his treatise on algebra entitled On equations 
(al-TusI, ed., 1986) is in the India office, London. For a translation and complete 
study of this work including a new translation of al-Khayyiim's work see al-TusI (ed., 
1986). The text is not a "commentary" as Sarton wrote, but really a summary as 
the unknown author explained: "In this work I wanted to summarize the art of algebra 
and al-muqabala, adapt what has survived from the great philosopher Sharaf al­
Din al-Mu~affar ibn Mul.tammad al-TusI, and reduce his overlengthy exposition to 
a moderate size; I eliminated the tables he drew up to make his computations and 
solve his problems", The manuscript is therefore an adaptation of al-TusI's 
algebraic work minus the tables and some figures; if we include the copyist's errors, 
it is understandable why it is difficult to read. This probably explains why it has never 
aroused the curiosity of historians. The manuscript comprises 154 in-folio pages. 

13. We now know that this work on algebra was completed by KarajI and his succes­
sors such as al-Samaw'al. See al-Samaw'al (ed., 1972), and Rashed (1971). 

14. Infra, 1.4, pp. 64-68. 
IS. In this respect, al-TusI's work may only be understood if sufficient emphasis is 

laid on the development of method invented to extract roots from a number. Two 
movements have marked the history of this problem: the first was dominated by 
the first algebraist, al-KhwarizmI, while the second was almost achieved by the 
renovator of algebra: al-KarajI. If the Arabic text of al-KhwarizmI's arithmetic 
remains lost, its Latin translation has, on the other hand, survived, see Vogel (1963). 
This text teaches us that al-KhwarizmI saw the problem of the extraction of the square 
root as a step towards the systematic study of arithmetical operations. He gave 
the rule of approximation for the square root of a number N; N = a2 + r, ...[N = 
a + rl2a. This fact was confirmed by al-KhwarizmI's Arab successors. For instance, 
ai-BaghdadI (d. 1037), in his work al-Takmila (MS Laleli 2708/1 Istanbul), attrib­
uted this approximation to al-KhwarizmI, and recalled that later Arab mathematicians 
deliberately abandoned it as unsatisfactory for values such as ...[2, -.[i Much more 
important than the rule of approximation are al-KhwarizmI's fundamental ideas on 
the subject and which may be Hindu in origin. He uses both the development 
(a + b)2 and the notation for N = 11010",-1 + ... + n",. His method consists of: 
(1) differentiating between two-digit groups, i.e. the positions 102.1:, k = 0, I, 2, ... 

the set of digits of the number from which one wants to extract the root, working 
from right to left. 

(2) then finding a number whose square is the highest square included in the last 
group (on the left) of two digits. This number will be the first digit of the root, 
that is a, written in its decimal order. 

(3) subtracting a2 to obtain the first remainder, and determining the second digit of 
the root with its decimal order, that is b, subtract 2ab, b2 from the first remainder 
and so on. AI-KhwarizmI's computation was not direct and his exposition 
remained imperfect. Later on, Arab mathematicians attempted to improve the 
approximation, and perfected the representation of the method, and finally 
extended it to the extraction of higher order roots: these were the three goals 
al-KhwarizmI's successors attempted to reach. 

For instance, al-Uql1disI (ed., 1973) first gives the approximation ...[N = a + 
r/(2a + I). but recalls that if al-KhwarizmI's approximation was in excess, it was 
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by default and {N = a + ,/2a + 112. Kushyllr ibn Labblln (1000 c.) wanted to 
improve the result and representation. For instance, in the example N = 65342, he 
proposes the following figures: 

(1) 2 { a = 2.102 

6 5 342 ~N 

4 2a 

(2) 2 

{ 
a 

2 5 342 ~ N_a2 

4 2a' 

(3) 2 5 

{ 
(a + b); b = 5 x 10 

2 5 3 4 2 ~ N_a2 

4 5 (2a + b); (2a + b)b ;a N - a2 

(4) 2 5 { a+b 
2 8 4 2 ~ N - a2 - (2a + b)b 

4 5 (2a + b) 

(5) 2 5 5 { (a + b + c); c = 5 x 10° 
3 1 7 ~ N - a2 - (2a + b)b - (2a + 2b + c)c 
5 1 1 2(a + b + c) +' 

hence ..fN = (a + b + c) + ,/[2(a + b + c) + 1] or , = N - a2 - (2a + b)b - (2a + 
2b + c)c. In this representation, he endeavours, as we see, to give the figure of the 
roots higher than N written out in full, and explicitly marks the positions and decimal 
order of each number in order to make the procedure uniform or "standard". See 
Saidan (1967), pp. 65-66 and the English translation with an historical introduc­
tion: Levey and Petruck (1965). Ibn Labblln's pupil, al-Nasawi went further, at 
least as far as the roots of fractional numbers are concerned. Arab mathematicians 
were later to improve on the representation and indicate the group of two digits by 
small circles, like Sharaf ai-DIn al-TUsI. Kushyllr ibn Labban and his pupil, al-Nasawi, 
did not stop there, they extended the same method to the extraction of cubic roots. 
They therefore used the development (a + b + ... + Wand always the decimal 

decomposition. They gave N = a3 +', VN = a + 3a/ + 1 their own formula, 

while other Arabic mathematicians used what Na~ir aI-Din al-Tusi was to call 

"conventional approximation": VN = a + 3a2 +'3a +1 ,i.e. an approximation that 

is to be found later in Leonardo of Pisa. See al-Tusi (ed., 1967), pp. 141ff. This 
method of extracting the roots of "pure powers" according to sixteenth-century 
terminology, was to be found together with some inessential variations by mathe­
maticians before al-TUsi. So we have attempted to show the result rather than a 
real history of the problem. See also Suter (1966), pp. 113-119; Luckey (1948). 

16. Woepcke (1851), p. 13. 
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17. See Schau (1923), 8, p. xxxii; Wiedemann and Suter (1920-21); Boilot (1955),2, 
p. 187. 

18. There is evidence of a generalized usage of tables in al-Samaw'al (ed., 1972). 
19. Only al-MardInI expressly attributed the invention of this method to al-TiisI (ed., 

1986), I. But in absence of further confirmation, this evidence is not decisive. 
20. Viete (ed., 1970): "Numerosam resolutionem potestatum purarum imitatur proxime 

resolutio adfectarum potestatum ... ", p. 173; see also p. 224. 
21. Viete (ed., 1970), p. 173: "Intelliguntur videlicet componi adfectae potestates a duobus 

quoque lateribus, immiscentibus se subgradualibus magnitudinibus, una vel pluribus, 
& in eadem resolvuntur contraria compositionis via, observato coefficientium 
subgradualium, sicut potestatis, & parodicorum graduum, congruente situ, ordine, 
lege, & progressu." 

22. Al-TiisI (1986), I, pp. 47-48; ff. 58'-59v • 

23. Al-TiisI (1986), II, pp. 19-32; ff. 113'-120'. 
24. The conclusion HL < HB is not valid for any value of a; it is not indispensable 

here as it may be shown directly that HL < HA is what al-TiisI seeks. HL is root 
of the equation K = HQX2 - x3 where HQ = 3AH. Putj(x) = 3AHx2 - x3• 

We have 

/'(x) = 3x(2AH - x), 

hence /'(x) = 0 for x = 0 and x = 2AH and /'(x) > 0 for x E ]0, 2AH[. 
On ]0, AH[ f is ascending monotonous with f(O) = 0 and f(AH) = 2AH3, where 

for K < 2AH 3 there exists Xo E ]0, AH[ such that f(xo) = K. Therefore if we set 
Xo = HL, we have HL < AH. 

25. Al-TiisI (1986), II, pp. 71-72; f. 143'. 
26. Al-TiisI (1986), II, p. 73; f. 144'; the expression for the higher limit is: nihaya fi 

al-cizam. 



CHAPTER IV. NUMBER THEORY AND COMBINATORIAL ANALYSIS 

1. DIOPHANTINE ANALYSIS IN THE TENTH 

CENTURY: AL-KHAzIN 

SUMMARY. First introduced in the 10th century, Diophantus' Arithmetica contributed 
much to the development of mathematics in the Middle Ages. Most notably it permitted 
the extension of classical Diophantine analysis, which existed already among the Arabic 
algebraists, independently of the Arabic translation of Diophantus. 

Less well-known but more original, is the contribution of the Arithmetica to the 
development of new research on modern Diophantine analysis, as that term was under­
stood by Bachet de M~ziriac and Fermat. The examination of two unpublished documents 
in this article demonstrates this fact more clearly than before. The author shows that 
this research, inspired by a reading of Diophantus. was the work of mathematicians who 
deliberately placed themselves outside the algebraic tradition and chose an intentionally 
different style from that of the Arithmetica. 

The contribution of Diophantus' Arithmetica to Arabic mathematics is 
both of greater and lesser importance than is generally granted. Many 
historians, after interpreting Diophantus' works algebraically, project their 
interpretation on history and overestimate the contribution of this 
mathematician to the constitution and development of this science. 
Despite diverging opinions, they all agree that the Arithmetica is a 
succession of numerical problems, mostly equivalent to indeterminate 
equations (or systems of equations) of degree ~ 9, with one or more 
unknowns and only contains rational quantities. The solutions of these 
equations must be positive rational numbers, integers if possible, but 
no requirement is formulated on this point. The Arithmetica only deals 
with positive rational numbers, algebraic irrational numbers are not 
considered for themselves, nor are there general criteria of rationality. 
If Diophantus sometimes examines conditions for rationality, it is only 
to seek a positive rational solution. So Diophantus' work is in the final 
count interpreted in terms of variables, powers, parameters and general 
solutions. For instance, when Diophantus wants "to divide a given square 
into two other squares", the statement is immediately translated as a 
second-degree indeterminate problem with two variables, equivalent to 
the equation x2 + l = a2• And as the mathematician, in the course of 
his solution, assigns a particular value to a given a, this is seen as a 
representation of any parameter for similar cases. 

205 
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This interpretation may no doubt enlighten the historian embarking on 
an examination of the internal cohesion and organization of the 
Arithmetica. When attributed to the author himself, however, it raises 
at least two problems in the field of historiography; it may substantiate 
the idea that the introduction of Diophantus was a source of algebra. 
Moreover, it precludes understanding a second trend whereby mathe­
maticians took Diophantus' work for what it was in fact: a book on 
arithmetic. 

It is a common fact that algebra received its name, was constituted 
as an autonomous discipline and developed on the conceptual and the 
technical level (including the study of indeterminate equations) before 
Qus~a b. Liiqa's translation of the Arithmetica (Rashed, 1974, 1975). 
For the history of Arabic mathematics, it may therefore be affirmed 
that, though Diophantus preceded al-KhwarizmT by several centuries, 
he was really his successor. The algebraic interpretation therefore 
introduces an error of perspective into the history of mathematics. And 
yet the paternity of such an interpretation must be imputed to Arab 
algebraists themselves. It suffices to remember that the title itself, 
Arithmetica, was simply translated as The Art of Algebra (Rashed, 1975). 
We shall show, on the other hand, that Diophantine analysis in the ring 
of relative integers, i.e. as Bachet de Meziriac understood it, arose in 
the tenth century under the direct impetus of the Arabic version of the 
Arithmetica. Now an algebraic interpretation contributes little to under­
standing the novel contribution of Diophantus' work, which forms the 
main topic of this chapter. 

In any case, clearly the historical question of the influence of the 
Arithmetica cannot be correctly answered unless, subsequent to theo­
retical analysis in the first place, Diophantine mathesis itself has been 
grasped. We carried out this analysis elsewhere (Diophantus, 1984, cf. 
Introduction), and advanced a thesis that may appear paradoxical: in 
the tenth century the Arithmetica contributed more to the constitution 
of a field that will bear Diophantus' name than to algebra. 

In the tenth century, we come across several works relating to 
Diophantine analysis as understood in the sixteenth and seventeenth 
centuries. These works that might appear no more than individual and 
unrelated, acquire a more defined status when related to the introduc­
tion of Diophantus; they then appear as elements of a trend in research 
largely stimulated by an arithmetical reading of Diophantus, and prepared, 
negatively at least, by the integration of Diophantine equations with 



NUMBER THEORY 207 

rational solutions into algebra. It remains for us to show briefly how 
this arithmetical interpretation came about. 

However, in the Arithmetica, the mathematicians' aim is clear: to 
construct a theory of arithmetic &'pt9flTl't1.X'fJ gerop(a., whose elements 
are numbers seen as pluralities of units 11Ovaorov 1tA.fl90~, and fractional 
parts as fractions of magnitudes. The elements of the theory are not 
only present themselves, but also as species of numbers. The meaning 
of the term doo~, translated by Qus!a b. Luqii as nawC and later on by 
Bachet, as species, is in no way limited to "the power of the unknown". 
It can be shown that this term is applied without distinction to both the 
power of a determined plurality and the power of a number of any 
plurality, i.e. temporarily undetermined, though always determined once 
the solution is found. The last number is the unnamed number, ~A.oyo~ 
ixpt9fl6~, shayJ. For a clearer understanding of the notion of species, it 
should be recalled that Diophantus discusses three different species: 
the linear number, nawCu al-Cadadi al-kha!{f, the plane number, nawCu al­
cadadi al-sa!/:zf and the solid number, nawCu al-cadadi al-jismf. These 
three basic species correspond to the three magnitudes set out in Book 
~ of the Metaphysics, obtainable by infinite divisibility according to 
quantity. Diophantus only discusses the nature of numbers, q)'()m~, !abC, 
in relation to the three species. Three classes of numbers exist: firstly, 
the number commensurable with the unit, divisible in one way only; 
secondly, the number commensurable with power, divisible in two ways, 
i.e. by two numbers equal to its sides; and thirdly, the class of numbers 
commensurable with the cube and divisible in three ways. These species 
engender all the others which must ultimately be named after them. For 
instance, the square-square, the square-square-square, the square­
cubo-cube are squares; the cubo-cube-cube is a cube. In other words, 
the species are only engendered by composition, and the power of each 
is necessarily a multiple of 2 or 3. So we now understand why the Arabic 
translation of Book IV entitled On Squares and Cubes, deals with 
square-squares, square-cube-cubes and cubo-cube-cubes as well. This 
also explains why the square-cube, though defined by Diophantus, never 
appears in statements of problems in the Arithmetica (in either the Greek 
or Arabic versions) and, furthermore, why the square-square-cube is 
completely absent from Diophantus' text. But this notion of species 
permits recognition of the same number as belonging to several species: 
the importance of this aspect was known not only for the formulation 
of problems, but their solution as well. At the same time the composi-
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tion of the Arithmetica is clarified: the combination of species with 
each other under certain conditions using the operations of elementary 
arithmetic. The solution of these problems is to try to proceed in each 
case "until there remains only one species on either side". 

However, a systematic examination of the text reveals, that by 
"solution" Diophantus means determinate numbers, i.e. positive rational 
numbers. On occasion, before embarking on the discussion, he imposes 
additional conditions on given numbers and parameters, such as the 
problem admits only one rational solution, in which case Diophantus 
qualifies the problem ltA<xcr~l(X'ttX6~, an expression perfectly expressed 
by muhayaJa, suitably determined. This concept of the solution explains 
why Diophantus never differentiates between determinate and indeter­
minate problems and why impossible problems as such were never 
studied. We know in fact that in his classification of problems, groups 
of determinate problems were inserted between indeterminate problems. 
We also know that problems that should have been included in the 
Arithmetica, such as the one equivalent to x3 + / = Z3, are missing. 

If, in the course of his solution, Diophantus proceeded with the 
substitution, elimination and displacement of species, in short using 
algebraic techniques, the Arithmetica is not a treatise on algebra. 
According to our terminology, it is definitely a book on arithmetic, not 
in the ring of relative integers, but the half-field of positive rational 
numbers; the main responsibility for the development of algebraic 
techniques, invaluable for Arabic algebraists, must apparently be imputed 
to the relatively narrow framework of the half-field. 

Seen in the light of the new algebra constituted by al-Khwarizml 
and his successors, the Arithmetica found its place among works on 
indeterminate analysis. It even communicated considerable impetus to 
the development of this area designated by its own title: fi al-istiqra OI 

as al-Karajl's works show, for example. It is clearly Diophantine analysis 
in the half-field of positive rational numbers. 

So Diophantus' influence on Arab algebraists is more apparent in 
the area of extension than that of innovation; but it is also noted that 
rational Diophantine analysis was fully integrated into algebra by means 
of indeterminate analysis. 

This was the situation encountered by some other tenth-century 
mathematicians, seldom algebraists; these mathematicians belonged to 
the Euclidean tradition in a certain sense. They were not only well 
acquainted with contemporary algebra but with Diophantus' work as well. 
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For Euclideans, arithmetic remained the arithmetic of integers rep­
resented by line segments. Unlike Diophantus' Arithmetica, this repre­
sentation made it possible to conform to proof requirements as defined 
and practised in the arithmetical books of the Elements. 

Moreover, their familiarity with the algebra and work of Diophantus 
made them avoid indeterminate equations with rational solutions as 
such in order to concentrate on problems common to the Elements and 
Diophantus' Arithmetica: the theory of Pythagorean triplets for example. 
It was this combination of both arithmetics - i.e. a reading of Diophantus 
in the light of Euclid - that led them quite naturally to Diophantine 
analysis as understood in the sixteenth and seventeenth centuries, and 
to encounter other problems it contained, for instance, the representa­
tion of integers as the sum of squares, quadratic congruence, etc.; which 
explains why proposition III-19 of the Arithmetica occupied such a 
privileged position in their work. 

As yet little is known about this trend. In the nineteenth century 
Woepcke translated and analyzed two papers by mathematicians dealing 
with some themes of Diophantine analysis. The first was anonymous 
(Woepcke, 1861), the second by al-Khazin (Woepcke, 1861); both dealt 
with Pythagorean numerical triangles. With his customary perspicacity, 
Woepcke drew the attention of historians to the existence of these inves­
tigations before the sixteenth century. We have noted the importance 
of the problem for a larger group of tenth-century mathematicians. We 
remarked that, in al-Bahir, al-SamawJal2 not only quotes Diophantus 
when discussing numerical right triangles, but also al-SijzI3 and Ibn 
al-Haytham.4 More recently, Adel Anbouba5 quite rightly emphasized the 
importance of this trend among tenth-century Arabic mathematicians, 
in particular al-Khazin. However, we know that two other tracts on 
numerical right triangles have survived. The first by Abu aI-IUd b. al­
Layth;6 the second, much more important, by al-Khazin. There is no 
question of writing about the history of this theory here. We shall simply 
isolate some of its features before examining two contemporary tracts, 
examples of the state and style of Diophantine analysis in the tenth 
century, one by al-Khazin, the other anonymous. 

(1) These mathematicians clearly underlined the originality of their 
investigations, unknown not only to the Ancients but also to their 
contemporaries. For instance, after giving the principle for generating 
numerical right-angle triangles, the anonymous author writes: 
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This is the principle for the knowledge of the hypotenuses of triangles which are the 
principles of species.7 I have found no reference to it in ancient books,s and none of the 
Modern authors who composed works on arithmetic mention it either. And I think that 
it was revealed to no one before myself. 

(2) They clearly differentiates between indeterminate analysis and 
new analysis. So al-Khazin assigns all problems lacking an integer 
solution to algebra. 

(3) These mathematicians occasionally cited Diophantus directly: 
al-Khazin referred to Book III-19. This confirms what we demonstrated 
earlier: Book III of the Greek text and the Arabic translation are 
identical and follow the same order. 

(4) Both tracts introduce the basic concepts of the new analysis: the 
primitive triangle, the generator, and in particular, the representation of 
the solution in relation to a particular modulus. For instance, the 
anonymous author states that any element of the sequence of primitive 
Pythagorean triplets is such that the hypotenuse is one of either form, 
5 (mod. 12) or 1 (mod. 12). 

(5) The study of impossible problems such as x3 + l = Z3. 

(6) The study of congruent numbers. 
(7) The use of the Euclidean term of segments in order to prove the 

various propositions. 
In conclusion, and to illustrate this field of investigation, let us now 

consider: I. the examination of al-Khazin's text and II. Fermat's theory 
for n = 3. 

I. AL-KHAZIN'S EPISTLE ON NUMERICAL RIGHT-ANGLE 

TRIANGLES 9 

In this epistle, which we shall closely follow and analyze here, al-Khazin 
states and proves the following three lemmas. 

LEMMA 1. There exists no couple of square odd integers whose sum 
is a square. 10 

Proof Let (a, b) be a couple of square odd integers such that 

a + b = c, c is a square. 

Let a = x2, b = yZ, c = Z2, (1) is written 

x2 + yZ = Z2. 

(1) 
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As a and b are odd, c is even; therefore x and yare odd and z is 
even. 

From (1), we deduce 

x2 = Z2 -l = (z + y)(z - y) = (z - y)2 + 2y(z - y). (2) 

However (z - y) is odd, therefore z - y = 2p + 1. 
On the other hand, 

x2 = [x + (z - y)][x - (z - y)] + (z - yf 
From (2) and (3) we deduce 

2y(z - y) = [x + (z - y)][x - (z - y)]. 

Assume 

z - y = 2p + 1, 

(3) 

then x + (z - y) is even, and x - (z - y) is even; the second member is 
divisible by 4; but in the first member, y(z - y) is odd. The equality is 
therefore impossible. Hence the conclusion. 

REMARK. The demonstration is made using segments and proposition 
IX-22 of the Elements. Proposition VIII-22 of the Elements is indicated 
in the text, but IX-22 is written in the margin in the same hand. 

It is therefore clear that 

if a == 1 (mod 4) 

b == 1 (mod 4) 

then c == 2 (mod 4) 

and there is no square of the form 2 (mod. 4). 

LEMMA 2. It is impossible that the sides of two squares whose sum is 
a square be evenways even. II 

Proof Assume x = 2m, y = 2n with m < n. 
x 1 

If p = n - m, then y = 2P ' whence we deduce 

(~ r = 2;P and 
~ 

~ + l = 1 + 22p· 
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But 1 + 22p is not a square [since two squares are never consecu­
tive],* therefore x2 + l is not a square either. 

REMARK. He proves therefore that 

x2 + l = 22m(1 + 22p ) 

is never a square. 
AI-Khazin's proof is made using segments and to conclude, implic­

itly uses proposition VIII-24 of the Elements. 

LEMMA 3. (a + b)2 = b2 + 4 % ( b + % ) . 

The identity l2 is verified for a even and b odd, for a and b even, using 
proposition 11-8 of the Elements. 

PROPOSITION 1. Find two square numbers, one even, the other odd 
co-prime, whose sum is a square. 13 Which means: find primitive 
Pythagorean triplets. 14 

Analysis 

Suppose these numbers exist. Let x, y be two numbers such that x is 
even and y odd, and that: 

x2 + l = Z2. (1) 

Set t = Z - y, t is even since y and z are odd, and it gives l5 

z=(Y+~J+~. (2) 

According to Lemma 3, we have 

Z2 = l + 4 (y + ~ ) . ~ , 

hence 

* Passages inserted between square brackets are not in the text. 
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therefore (y + ~) . ~ is a square, and so is (Y + ~ )/ ~ . 
Write 

(p, q) = 1 
(p > q) 

p and q have different parities according to (2). 
Hence 

REMARKS. 
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(1) It is clear that al-Khiizin implicitly uses several propositions from 
the Elements - VIII-9, 24, 26; IX-2 - in his analysis. That he did not 
quote them explicitly is proof the Elements already constituted a common 
source for mathematicians. 

(2) AI-Khiizin does not give the synthesis of this proposition. It was 
given, it is true, in X-29, Lemma 1 of the Elements. If we combine 
al-Khiizin's analysis with Euclid's synthesis, we obtain the following 
theorem (Hardy and Wright, 1965, tho 225). 

Let x, y, z be three numbers such that x > 0, y > 0, z > 0, (x, y) = 1, 
x even. 

The following conditions are equivalent: 
(a) We have x2 + l = Z2. 

(b) There exists a couple of integers (p, q) such that p > q > 0, 
(p, q) = 1 and p and q have opposite parities, such that 

(*) 

It results from X-29, Lemma 1 of Euclid, that (b) ~ (a); and al-Khiizin's 
proposition that (a) ~ (b). He calls this last implication analysis. 

It remains to prove that Euclid's application 

E: (p, q) ~ (x, y, z) 

defined by the relation [*] is surjective; which is easily seen (Hardy 
and Wright, 1965) and strongly emphasized by al-Khazin, though not 
demonstrated. Furthermore, he points out that if x and y are both even, 
they result from a couple (p, q) with (p, q) = 1. In other words, al-Khiizin 
indicates that the triplets (x, y, z) where x and yare even, are also in 
the image of Euclid's application: we have the same formulae as above. 
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AI-Khazin next affirms for numerical examples that Euclid's appli­
cation is homogenous for degree 2. If p' = AP and q' = Aq, by setting 

(x, y, z) = E(p, q) 
(x', y', z') = E(p', q') 

we have 

E(Ap, Aq) = A 2E(p, q), 

i.e. 

(x', y', z') = (A2X, A2y, A2Z). 

Next he deals with the two following problems: 

PROBLEM 1. There exists a family of square numbers such that if we 
add 1 to each of them, each sum is a multiple of 5. 

It therefore consists of numbers that verify the relation 

(x2 + 1) == 0 (mod 5). 

As a solution, al-Khazin gives numbers such that: 

x == 2 (mod 5) 
x == 3 (mod 5). 

It should be noted that in this instance we are confronted with a very 
ancient, if not one of the earliest examples of the solution of poly­
nomial equations modulus a given integer. In modern terms, -1 is a 
quadratic residue modulus 5. We are already within the field of con­
gruence theory. 

PROBLEM 2. To find square numbers multiples of 9 and 16 such that 
their sum is a multiple of 5. 

AI-Khazin's expression of this problem is somewhat confused. He 
proceeds as follows 

We know that: 
If p = 2, q = I, we have x = 4, y = 3, z = 5, a primitive triplet that 

answers the problem. 
If p = 3, q = I, we have x = 6, y = 8, z = 10, a non-primitive triplet, 

a multiple of triplet (3, 4, 5) whose squares are respectively multiples 
of 9, 16 and 5. 
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If p = 3, q = 2, we have x = 12, Y = 5, z = 13. This triplet is unsuit­
able. 

If p = 4, q = I, we have x = 8, Y = 15, Z = 17, a triplet to be excluded 
since z is not a multiple of 5. 

If p = 11, q = 2, we have x = 44, Y = 117, z = 125; therefore x2 is a 
multiple of 16, l is a multiple of 9, and Z2 a multiple of 5. But we 
note that this triplet is not a multiple of the first, and that r, y2 are not 
multiples - "equimultiples" - of 16 and 9. According to al-Khiizin 
this is because 125 is decomposed into the sum of two squares in two 
different ways 

125 = 100 + 25 = 4 + 121. 

Therefore, for p = 10, q = 5, we have x = 4.25, y = 3.25, z = 5.25, 
a multiple triplet of the first triplet. 

From the triplet (3, 4, 5) which corresponds to p = 2, q = I, we 
therefore obtain p = 2A, q = A, (4A?, 3A2, 5A2), a triplet that answers 
the problem for any A. But other primitive solutions exist, for example 
(44, 117, 125) and each of them is associated with a family of 
solutions. 

REMARK. If we examine the above closely, we note that al-Khiizin 
states the problem 

x2 +/=r 
x = 4u, y = 3v, Z = 5w. 

Problem 1 implies that if z = p2 + I, then p == 2 or 3 (mod 5). 
As if to relate it with problem I, al-Khiizin cites the couples (p, q) 

= (2, 1) and (p, q) = (3, 1) as solutions to problem 2 without further 
explanation. 

A family of solutions to problem 2 obviously consists of the multiple 
triplets of (3, 4, 5) 

u = v = w, 

but he notes that there are other solutions. He finds for example 

u = 11, v = 39, w = 25. 

However, all the above considerations show that it consists of solving 
the equation 

16u2 + 9v2 = 25w2 
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whose set of solutions is in bijection with that of the solutions of the 
equation 

by the relation (Mordell, 1969, p. 43) 

dx = 4u, 
ou = 15x, 

dy = 3v, 
ov = 20y, 

dz = 5w 
Ow = 12z 

(u, v, w) = 1 
(x, y, z) = 1 

PROPOSITION 2. We can find n square integers whose sum is a square l6 

[<=> to resolve into integers xi + x~ + ... + x~ = X2]. 
Proof n = 2. 
AI-Khazin first proves the identity: 

The identity yields the solution: 

( p2 _ q2 p2 +2 q2 ) 
(Xl' X2' X) = pq, 2 ' 

for any couple (p, q) such that p > q and with p and q of the same 
parity. 

We note that the identity 

4p2q2 + (p2 _ q2)2 = (p2 + l)2 

yields the solution 

(Xl' X2, X) = (2pq, p2 _ q2, p2 + q2) 

for any couple (p, q) such that p > q. This solution was examined 
earlier, and we saw that the triplet obtained was primitive if (p, q) = 1 
and p and q of different parities 

n = 3. 

AI-Khazin proves the identity 
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This identity yields the solution 

( p2 _ q2 _? p2 + q22 + ? ) 
(Xl' X2' X3' X) = pq, pr, 2 ' :-~:--

an integer solution if p2 - q2 - r2 and p2 + q2 + ? are even, which 
requires p2 and q2 + ? of the same parity. 

p2 even and (l + ?) even <=> {p even, q even, r even 
P even, q odd, r odd 

p2 odd and (q2 + ?) odd <=> {p odd, q even, r odd 
P odd, q odd, r even. 

The triplet (p, q, r) must therefore consist of three even numbers, or 
one even and two odd numbers. 

The identity 

4p2q2 + 4 p2? + (p2 _ q2 _ ?)2 = (p2 + l + ?)2 

yields the solution 

(Xl' X2, X3' X) = (2pq, 2pr, p2 _ q2 _ ?, p2 + q2 + ?). 

For any triplet (p2, q2, ?) such that p2 > q2 + ?, if (p, q, r) = 1 then 
(Xl' X2' X3, X) = 1. 

REMARKS. 
(1) AI-Khazin's reasoning is general, even if he stops at the case 

n = 3. 
In fact, let PI' P2, ... , Pn be integers such that 

n-l 
p~ > L p;. 

i=l 

We have in fact 

n-l 1[ n-l]2 l(n )2 
p~ i~l P; +"4 p~ - i~l P; ="4 i~l P; ; 
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hence 

x; = p;p~ (r = 1, 2, ... , n - 1), 

n-l 
For an integer solution, p~ and L p; must be of the same parity. 

;=1 
Now let the identity be 

n-l [ n_I]2 (n )2 
4p~ oL P; + p~ - oL P; = oL P; ; 

1=1 1=1 1=1 

we draw the solution 

x; = 4p;p~ (r = 1, 2, ... , n - 1); 

[ n-l] 2 
x~ = p~ - oL P; , 

1=1 

If (p, ... , Pn) = 1, we then have a primitive solution which is easy 
to prove. 

(2) AI-Khazin uses segments to prove the identities. 
n-I 

(3) If the solution is not an integer, i.e. if p~ and L P; are 
;=1 

not of the same parity, then according to al-Khazin, the problem is 
algebraic, i.e. it concerns "the indeterminate analysis" of algebraists, since 
the solution is fractional. 

PROPOSITION 3. To resolve into integers!7 

x2 + l = l. (1) 

Let (p, q, r) be a Pythagorean triplet, and set: x = 2pq, Y = p2 - q2; we 
then have x2 + l = r4, according to the identity already seen 

(2) 
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It is sufficient therefore to use Euclid's application again, by setting 

p = 2uv, q = u2 - v2, r = u2 + v2. 

EXAMPLE. u = 2, v = 1, whence p = 4, q = 3 and x = 24, Y = 7 and 
z = r = 5. 

PROPOSITION 4. To resolve into integers18 

X4 + l = Z2. 

First method. We have the following identity 

4 ( u4 • ± v4 ) = u4 v4 • 

1 
Set p = u2, q = "2V2, we have 

X4 = 4p2q2 = U4V 4, l = (p2 - q2)2 = (u4 _jv4 r ' 
Z2 = (p2 + q2)2 = ( u4 + j v4 ) , 

EXAMPLE. u = 1, v = 2, x = 2, Y = 3, Z = 5. 

REMARK. Equation (1) is equivalent to 

{ 
X2 = ~ 
~2 + l = Z2 

~ = 2pq, Y = p2 _ q2, Z = p2 + q2. 

(1) 

This yields the relation 2pq = x2 which is satisfied if 2pq is a square. 
2 

Al-Khazin suggests taking p = u2, q = ;; whence x = uv. 

Second method. Having found a particular solution with Z2 = 
(p2 + q2)2 = 25 _ therefore p2 + q2 = 5 - he seeks a solution with Z2 = 
25A,z. 

We have 

4').}p2q2 + (A.p2 _ At/)2 = ').}(p2 + q2)2 

and want to find (A.p2 - ')..q2)2 biquadratic, therefore 'A(p2 - q2) square. 
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He therefore seeks two integers u, v such that: u = A,p2, V = 'Aq2 with 
(u - v) square and 

u 1 
EXAMPLE. u = 12, v = 3, u - v = 9, ~ = "4 ' 

REMARK. The equation X2 + / = Z2 is equivalent to 

{l=11 
X2 + 112 = Z2 

X = 2pq, 11 = p2 -l, Z = p2 + q2. 

It is therefore sufficient that p2 - q2 = l, in other words, p2 = l + q2 
(Pythagoras). AI-Khazin applies this method in the particular case 
(3, 4, 5). 

AI-Khazin sets forth other investigations which are merely variations 
on the above. 

PROPOSITION 5. For any number decomposable into two squares, its 
double is decomposable into two squares, and also the double of the latter 
and so on into infinity;19 

Proof. Let 

k = X2 + l, with x"# y. (1) 

According to the Elements (11-10, VII-5 and VII-9) we have, for any 
couple of numbers (a, b) 

(a + b)2 + (a - b)2 = 2(a2 + b2), (2) 

therefore 

2k = (x + y)2 + (x _ y)2 
2k = xi + yt with Xl = x + y, Yl = X - y; x > y. 

Similarly 

22k = (Xl + YI)2 + (Xl - YI)2 = x~ + y~ 

and [by mathematical induction] we have 

2nk = x; + Y;. 

REMARK. Here the proof is algebraic, and al-Khazin only mentions 



NUMBER THEORY 221 

simplifications given by VII-5 and VII-9, clearly based on an algebraic 
interpretation of 11-10 which he does not quote explicitly. 

PROPOSITION 6. For any even number decomposable into two squares, 
its halfis decomposable into two squares and so on as far as one wants.20 

Proof The identity (2) allows us to write 

( x ~ y r + (x; Y r = r ~ y2 with x > y. 

if k = r + l with k even, then 

~k= (x~Yr + (x;Yf 

Therefore x and Y must be of the same parity so that x + Y and x - Y 
x+Y X-Y are both even, and-2-= XI and-2-= YI are integers. 

We have therefore 

1 - k - x 2 + y2 2 - I I· 

Similarly, we have 

(~rk=~+y~ 
with X 2 = XI ~ Yl and Y2 = XI ; Yl [by mathematical induction], with 

conditions of parity, we have 

(~ r k = ( Xn_1 ~ Yn-I r + (xn_1 ; Yn-I r 
REMARK. As al-Khazin conceives numbers as "the plurality of units", 
he restricts this proposition to even numbers. He writes as follows: 
"Which is why, if the number that is decomposed into two squares is odd, 
its half will be a fraction and it is not decomposed into two square 
numbers, since the number, as we said, is composed of integer units". 

And so al-Khazin arrives at the central problem of his paper. He writes: 
"After introducing the above, we reach the goal pursued, which is to 
show: if we choose one number from the numbers, how to find a square 
number such that if we add the given number to it and if we take away 
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the same number from it, the sum and the difference will be two squares". 
Dickson (1919, II, pp. 459ff.) has given a summary of the history of 
this problem. Let us note here that this problem was dealt with in an 
anonymous manuscript (Dickson, 1919, II), and the author gave the table 
of numbers that solves the problems. AI-Khazin takes another path: he 
looks for the conditions necessary for solving this system; which is 
why he starts with "analysis". His theorem may be presented as follows: 

THEOREM.21 Let a be a given natural integer, the following condi­
tions are equivalent: 

(a) the system 

{ i2 + a = Yt 
i2 - a = y~ (Yl > X > Y2) 

admits a solution; 
(b) there exists a couple of integers (u, v) such that 

{ 
U2 + v2 = x2 

2uv = a. 

(1) 

(2) 

Under these conditions, a is of the form 4k, and k is not a power of 2. 
(a) ~ (b). Assume that (1) admits a solution, we have therefore 

(3) 

According to Lemma 1, it is easily deduced that the integers Yl' Y2 
have the same parity, and this enables us to define the integers u, v 
by 

u = Yl + Y2, V = Yl - Y2 
2 2 . (4) 

We have therefore 

u2 + v2 = (Yl ; Y2 ) 2 + ( Yl ; Y2 ) 2 

1 = "2 (yt + yD = x2 (5) 

and 2uv = 2 ( Yl ; Y2 )( Yl ; Y2 ) = ; (yt - y~) = a. 
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(b) => (a). Let (u, v) satisfy (2); put Yl = u + V, Y2 = U - v. 
We then have 

Y f = u2 + 2uv + v2 = x2 + a 
Y ~ = u2 _ 2uv + v2 = x2 - a. 
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If u2 + v2 = x2, u and v cannot both be odd (Lemma 1); therefore 
one of them is even and a = 2uv is clearly of the form sought 4k. 
AI-Khazin notes that 24 is the smallest integer a that verifies these con­
ditions. 

EXAMPLE. u = 4, v = 3, u2 + v2 = 52, x2 = 52, Yl = U + v = 7, Y2 = 
U - v = 1, integers that verify 

{ 52 + 24 = 72 
52 - 24 = 12. 

REMARKS. 
(1) Here al-Khazin proceeds using the Diophantine method of "the 

double equation".22 In fact, in (3) he changes the linear variable (4). 
(2) AI-Khazin calls u and v two associated integers - qarfnayn. 
(3) He writes: "There exists no multiple of 24 such that its half is 

divisible by two associated numbers before 240." However, a few 
sentences later, he gives a = 96 = 4.24, whose half 48 = 6.8 verifies 
the conditions, and we have: 

{ 102 + 96 = 142 
102 - 96 = 22 

But in this case we have no primitive solution to (5). Was this why 
he excluded this case? There is no basis for an answer. 

(4) For a = 240, we have 

{ 172 + 240 = 232 
172 - 240 = 72 

(5) AI-Khazin deals with problems that have a rational solution; in 
this case he writes, "we express (lafa'{,a) by using the term indetermi­
nate analysis in the algebraists' sense of miil, square". The distinction 
is important for understanding al-Khazin's method. For instance, in the 
case where a is divisible by two squares, (1) is rewritten 
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{ xi + a l = zi h f . 
_2 2 wit Xl ractlOnal. 
Xi - al = Z2 

For a = 240, therefore divisible by 16 and 4, the system is rewritten 
in two ways 

{ 
(Ii r + 60 = (2; r 
(lir -60= (~r 

and { (~ r + 15 = (21 r 
(~ r -15 = (~ r 

(6) He sets out several particular methods for solving (1), either as 
integers or as rational numbers like the algebraists; the following are 
the most important: 

(a) Assume the given number is written a = ( 1 + t) t2• In this 

case X = (1 + ~) t, and (1) is rewritten 

{ i~ f + ~ f = YI = (~ r f 
i~ f - ~ f = Y~ = (! r f 

Set t = 8, we have X = 10, a = 96; 
(b) A method according to "the rules of the art", al-farfq al-~iniicf 

of algebra, or the canonical method of algebraists. 
To solve (1), let us first find Xl' such that 

xi + (~ r = l. 
We have 

Put 
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(1) is rewritten 

AI-Khazin, after having noted that the system 

{ .r+20=Yi 
.r - 20 = Y~ 
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is impossible for integers, applies the above method for solving into 
rational numbers, i.e. like algebraists. 

3 
He takes Xl = 2" ' we have 

hence 

41 49 31 
X = Zl = 6' YI = 6"' Y2 = 6" . 

(7) To ensure that u2 + v2 = Z2 (u > v), al-Khiizin gives the obvious 
criteria 

v2 = 2uq +,;. with r = q 

in fact, in this case, we have Z2 = (u + q)2. 

(8) Note again that whenever al-Khiizin discusses the rational 
solution, he explicitly mentions "the art of algebra" in one way or 
another.23 

Properties of numbers "where each one is decomposed into the sum of 
two squares.24 

AI-Khiizin writes: "This clarifies the preliminary - al-muqaddima -
introduced by Diophantus in problem 19 in Book Three of his work on 
algebra". This remark of major historical significance requires comment. 
Let us first recall Diophantus' text. In Book III - in Greek - of the 
Arithmetica, Diophantus wants to solve the problem equivalent to 

(Xl + X2 + X3 + X4)2 ± Xi = Yt with i = 1, 2, 3, 4. 
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To solve this problem, he starts with a preliminary on rational right­
angle triangles, i.e. by discussing a problem equivalent to 

X2 + l = Z2. 

On this occasion, he remarks that if band c are the two sides of a 
right-angle triangle with hypotenuse a, then 

a2 ± 2bc = b2 + c2 ± 2bc = (b ± cf 
He recalls, moreover, the result of problem 11-9: "To divide a given 

square into two squares in an infinite number of ways", and seeks to 
represent an integer n as the sum of two squares in four different ways. 
To solve the last problem, he considers two right-angle triangles "in 
the smallest ratio", i.e. whose sides are co-prime integers. He finds (3, 
4,5) and (5, 12, 13), and concludes that the product of their hypotenuses 
may be represented as the sum of two squares in two different ways 

65 = 16 + 49 = 1 + 64. 

The least we can say is that in this instance Diophantus poses the 
problem of the decomposition of a integer as the sum of squares of 
integers. 

Strictly speaking, this preliminary may be considered as a lemma to 
III-19; which is why al-Khazin uses "al-muqaddima allaff qaddamaha", 
"the introduced preliminary" here, clearly distinguishing between this 
preliminary or lemma and the proposition itself. Both the extant Greek 
text and the Arabic translation summarized by al-KarajI confirm that this 
preliminary was always an integral part of the proposition itself. In this 
summary, both the preliminary or lemma and the problem itself were 
given by the title of III-19. 

On the other hand, it is known that it was the same problem that led 
Bachet, and later Fermat, to examine the representation of an integer, 
notably prime numbers as sums of squares. See Fermat's note VII 
(Fermat, 1896, vol. 3, pp. 243ff.). Therefore the origin of this investi­
gation apparently lies in the tenth century, as al-Khazin's text proves. 

PROPOSITION 7. If an integer is decomposed into the sum of two 
squares, then its square is also decomposed into the sum of two squares.25 

Let n = p2 + q2 (n, p, q integers). 
We have: n2 = (p2 + q2)2 = 4p2q2 + (p2 _ q2f 
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PROPOSITION 8. If a number is decomposed into two plane numbers 
whose factors are proportional, then its square is decomposed into two 
squares. 

Let n = pq + rs (n, p, q, r, s integers) with.E =!l. . 
r s 

We have 

n2 = 4pqrs + (pq - rs)2. 

Now pqrs is a square; since if p = !.- = k, then E!1 = r~ = k and 
pqrs q s q s 
--:i::2 = k2• qs 

PROPOSITION 9. If a square number is decomposed into the sum of 
two squares, then its square is decomposed into two squares in two 
different ways. 

Let n2 = p2 + q2 (n, p, q integers). 
We have 

n4 = n2.n2 = n2p2 + n2q2. 

On the other hand, we have 

n4 = 4p2q2 + (p2 _ q2)2. 

PROPOSITION 10. The product of two numbers where each is decom­
posed into two squares is decomposed in the sum of two squares in two 
different ways. 

Let m = p2 + l, n = r + S2 (m, n, p, q, r, s integers). 
We have 

hence 

(p2 + q2)(r + S2) = p2r + p2S2 + q2r + q2s2 
= p2r + q2s2 + 2pqrs + p2S2 + q2r - 2pqrs 

mn = (p2 + q2)(r + S2) = (pr + qS)2 + (ps - qr/ 
= (pr - qS)2 + (ps + qrt 

EXAMPLE. 

5 = 4 + 1 p = 2, q = 1 
13 = 4 + 9 r = 2, s = 3. 
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We have 

5 x 13 = 65 = (4 - 3)2 + (2 + 6)2 = 12 + 82 
= (4 + 3)3 + (6 - 2)2 = 72 + 42. 

REMARK. It is therefore clear that this proposition directly refers to 
Diophantus III-19; but al-Khazin explicitly shows that it is a consequence 
of the identity 

(p2 + q2)(,J- + S2) = (pr + qS)2 + (ps _ qr)2 
= (ps + qr)2 + (pr - qS)2 

which is one of the first known decompositions of quadratic forms. 
Note that this identity was not mentioned explicitly by Diophantus. 

PROPOSITION 11. The product of two numbers where one is decom­
posed into the sum of two squares in two different ways and the other 
is decomposed into the sum of two squares in one way, is decomposed 
into the sum of two squares in four different ways.26 

Let m = p2 + q2 = p~ + q~, n = ,J- + S2. 
We have as above 

mn = (pr + qS)2 + (ps - qr)2 = (ps + qr)2 + (pr - qS)2 
= (Plr + q1S)2 + (PIS - qlr)2 = (PIS + qlr)2 + (Plr - qIS)2. 

PROPOSITION 12. The product of two numbers where one is decom­
posed into the sum of two squares in two different ways and the other 
is a square which is decomposed in one way into the sum of two squares, 
is decomposed into the sum of squares in six different ways.27 

Let m = p2 + q2 = p~ + q~, n2 = ,J- + S2. 
We have 

mn2 = (pr + qS)2 + (ps - qr)2 = (ps + qr)2 + (pr - qS)2 
= (Plr + q1S)2 + (PIS - qlr)2 = (PIS + qlr)2 + (Plr - q1S)2 
= p2(,J- + S2) + q2(,J- + S2) 
= p~(,J- + S2) + q~(,J- + S2). 

PROPOSITION 13. The square of a number decomposed into the sum 
of two squares in two different ways is decomposed into the sum of two 
squares in four different ways. 

Let m = p2 + q2 = pt + qf, 
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We have 

m2 = 4p2l + (p2 _ q2)2 

= 4piqi + (pi - qi)2. 

On the other hand, we have 

m2 = (PPI + qql)2 + (pqj _ QPI)2 
= (pql + qPI)2 + (PPI _ qql)2. 

m = 65 = 64 + 1 = 16 + 49. 

We have 

m2 = 162 + 632 = 256 + 3 969 
= 562 + 332 = 3 136 + 1 089 
= 602 + 252 = 3 600 + 625 
= 392 + 522 = 1 521 + 2 704. 

AI-Khazin recapitulates these values as follows in the table below 

3969 63 16 256 

3600 60 25 625 

3136 56 33 1089 

2704 52 39 1521 

He concludes as follows: 
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The square of sixty-five, with the squares into which it is decomposed, is what Diophantus 
introduced beforehand in the problem we mentioned [llI-19] which is to find four numbers 
such that, if we add each one to the square of their sum, what is obtained has a root, 
and if we subtract each one from it, what remains has a root. 

The above is an almost literal translation of III-19 of the Arithmetica. 
AI-Khazin terminates the propositions by affirming that this prelimi­
nary to III-19 may lead to the following proposition, which he did not 
prove. The proof can effectively be made using the procedures employed. 
We shall give it in another language. 

PROPOSITION 14. To find four different numbers such that their sum 
is a square and any sum of two of them is a square (Diophantus, ed., 
1984, III-6). 
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This problem is written 

XI + X2 + X3 + X4 = Z2 
XI + X2 = U~ 
X3 + X 4 = U~ 

(Lo) XI + X3 = V~ 
X 2 + X4 = V~ 
XI + X4 = W~ 
X2 + X3 = W~ 

Consider the system 

I U~ + U~ = Z2 
(I.) V~ + V~ = Z2 

W~+W~=Z2 

Then, if we put 

{ 
2x1 = ui + vi - w~ = ui + wi - v~ = u~ + v~ + w~ - Z2 
~=~-~+~=~-~+~=~-~-~+t 
2x3 = U~ + V~ - W~ = U~ - V~ + W~ = -U~ + vi - W~ + Z2 
2x4 = U~ - vi + wi = U~ + V~ - W~ = -ui - vi + wi + Z2 , 

we obtain a solution of system (Ia). Reciprocally, all solutions of (I.o) 
give a solution of (I.). 

The solutions of system (I.) are given by the relations (C). 

I Z = dl(p~ + q~), UI = dl(p~ - q~), U2 = 2dlPlql 
(C) Z = dlp~ + q~), VI = d2(P~ - q~), V2 = 2d2P2q2 

Z = d3(P~ + q~), WI = d3(P~ - q~), W2 = 2d3P3q3 

with di e N, (Pi' q) = 1, (i = 1, 2, 3). 
So that the system (I.) admits integer solutions, it is necessary and 

sufficient that UI, VI' WI be integers, and that UI + VI + WI (therefore z) 
are odd. We then choose the integers Pi and qi such that (Pi' qi) = 1 and 
if 

N = ppcm(pt + qt, p~ + q~, p~ + q~), 

we take z the multiple of Nand 
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The method is the same for the problem 

{ f Xi = l 
i=l 

Xi + Xj = U~ (i <j) (@ equations) 

when n is even ~ 4. 

II. ABU JA cFAR: ON THE DIOPHANTINE EQUA nON x 3 + y3 = Z3 

We know from al-Khazin that the tenth-century mathematician al­
KhujandI stated Fermat's theorem for n = 3. AI-Khazin laconically 
affirms29 that the latter's proof was false 

I demonstrated earlier, he wrote, in fact, that what Abii Mu4arnmad al-KhujandI advanced 
- may God have mercy on him - in his demonstration, that the sum of two cubic numbers 
is not a cube, is defective and incorrect. 

Until now there was no support for this significant piece of evidence. 
However, we have discovered a manuscripeo attributed to AbO Jacfar, 

which states this theorem including an attempt to prove it. Not only 
does this manuscript enable us to grasp why the tenth-century mathe­
matician was unable to consider the case where n > 3, it also coincides 
on all points with al-Khazin's affirmations, except that it was attrib­
uted to AbO Jacfar and not to al-KhujandI. Apart from this attribution, 
the author only indicates his interest in Diophantine analysis and number 
theory. All we know is that AbO Jacfar al-Khazin fits this description. 
It would however be surprising if he were the author of a text whose 
proof is so obviously defective. How, after his denunciation of al­
KhujandI's proof, could he in turn have followed such an erroneous 
approach? Unless we are to suppose al-Khazin himself was completely 
off the track. 

It may refer to a tract where al-Khazin quotes al-KhujandI's text, a 
hypothesis justified by the title itself: "This is the proof using segments 
according to - Can - the master AbO Jacfar ... "? But such a conjecture 
does not stand up to one simple observation: al-Khiizin's criticism of 
al-KhujandI's proof is, as we have seen, not to be found in this text. 

Though not wishing to draw a conclusion, we may advance that this 
tract dates back to the time of al-KhujandI and al-Khiizin, in other 
words the tenth century. It is therefore the work of one of those 
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mathematicians interested in Diophantine analysis. From this period on 
Fermat's theorem for n = 3 was studied by mathematicians and became 
famous enough to attract the attention of philosophers themselves. For 
instance, in the early eleventh century, Avicenna recalled in his 
Compendium al-Shifa J (ed., 1956, V, pp. 194-195) that this theorem 
had not yet been demonstrated: 

Is the sum of two cubic numbers, he wrote, a cube in the same way as the sum of two 
square numbers is a square? 

In the rediscovered text the problem is stated in almost identical 
terms. 

After stating the theorem in a perfectly clear way, the author sets 
out to prove it, starting with the identity 

Z3 -l = y2(Z - y) + (z + y)(z - y)z (z > y). 

To prove the theorem, he starts by interpreting this identity geo­
metrically; he observes that the second member corresponds to a volume, 
but is not a cube. He therefore deduces that the first member is not a 
cube. The confusion between the geometrical figure and its volume -
elementary - even for the age - is no basis for assessing his mathematical 
competence. It may in fact result from a determination to avoid 
difficulties by justifying a proposition that the author "intuitively" knew 
to be true. It may even be assumed that this conviction itself was based 
on numerous numerical trails. The geometrical approach, which moreover 
permits the introduction of proof methods in Diophantine analysis - a 
decisive step in its constitution - functions here as a real obstacle. The 
proof is unsuccessful, the geometrical approach intrinsically hindering 
a more general formulation of the problem. The case where n = 4 
no longer depends on a geometrical interpretation. To alleviate the 
difficulties of the problem of proof and the generalization of the 
formulation would have required adopting a more arithmetical approach. 

Even if we had to wait for Fermat and Euler to accomplish this task, 
in spite of everything this problem did not cease to preoccupy Arab 
mathematicians. For instance, algebraist-mathematicians such as Ibn 
al-Khawwam in the twelfth century and his famous fourteenth-century 
commentator, Kamal aI-DIn al-FarisI, noted the impossibility of 
X4 + l = l without proving it. 

Numerous other examples of the existence of Fermat's theorem in 
Arabic mathematics for the case cited above could be given. For the time 
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being we shall be content with giving the translation of Abu Jacfar's 
text whose historical significance is evident. 

This is the proof using segments according to the master Abii Ja'far, may God have 
mercy on him. 

It is impossible that the sum of two cubic numbers be a cubic number, while it is 
possible that the sum of two square numbers is a square number, and it is impossible 
that a cubic number is divisible into two cubic numbers, while it is possible that a square 
number is divisible into two square numbers. 

We shall show this as follows: for two cubic numbers, their difference is the sum of 
the product of the square of the smallest side' by the difference of two sides, plus the 
product of the sum of two sides by their difference and then by the greatest side. 

Suppose AB any number, and divide it into two different parts at point e. Construct 
two squares AD and AE on them. The product of the sum of AC and AB by BC, which 
is the difference between two sides, is the difference between two squares AD and AE, 
which is the area of the border.* The product of the square AD by AC is a cube with 
side AC and the product of the square AE by AB is a cube with side AB. But the sum of 
the products of the square AD by AC and (the square AD)** by CB - which are both 
perpendicular in depth at point C - and the product of the border area by AB - which is 
perpendicular in depth to point E - is the cube of AB. 

Subtract the product of the square AD by AC, which is the cube of Ae. Therefore 
the remainder is the product of the square AD by CB, plus the product of the sum of 
two sides by their difference, and then by AB - (this last product)*** is the product of 
the area of the border by AB - which is the difference between two cubes. But this 
difference is not a cubic number, because it is not the product of a square number by 
its side. We have therefore shown that if we subtract a cubic number from a cubic 
number, the remainder is not a cubic number. 

E,--_____ ...., 

Dr------i 

B c A 

And similarly, a cubic number is not divisible into two cubic numbers. 
Now suppose two different cubic numbers such that their sides are AB and BC. Let 

BC be the largest side. The side of the sum of two cubes is therefore greater than Be. 

* 
** 

*** 

Dr-I --rt---~B--A. 

It consists of the area comprised by two squares - Ed. 
Our angle brackets - Ed. 
Our angle brackets - Ed. 
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Set this side BD. If BD is the side of a cube, then if we subtract its cube from the 
cube of BC, the remainder is equal to cube of AB. But we have shown that if we subtract 
a cubic number from a cubic number, the remainder is not a cubic number. Therefore 
BD is not the side of a cube, and the sum of two cubes AB and BC is not a cubic number. 
Which is what we looked for. 
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NOTES 

1. Although not in the Koran, this term is used for E7tlXYo:ryfJ in several translations of 
Aristotle. However, the meaning of "to induct" is contained in the Arabic verb root. 
For instance, in Lisiin - written in the thirteenth century based on much earlier 
evidence - qarawii, iqtara and istaqra (countries, people and things), it implies 
considering and examining them in turn. This meaning of the verb was retained 
later by all dictionaries and glossaries without exception (see, for example, Al­
Tahlinawl, 1862, p. 1229). From the 10th century on, this term designed indeterminate 
analysis. For details of the discussion, see Diophantus (ed., 1984). 

2. Al-Samaw'al, Al-Biihir (ed., 1972); see the Arabic text pp. 146-151 and the French 
introduction, pp. 64-66. 

3. Ibid. 
4. Ibid. 
5. See Anbouba (1978). In particular, his remarks on al-Khlizin's work (pp. 91-92) 

analyzed in I. See also the appendix (pp. 98-100), where Anbouba corrects an error 
made by Woepcke and commonly accepted since then, which consists of inventing 
a second author - Abu Ja'far Mul;lammad b. al-J:lusayn - to whom some of al-Khlizin's 
works were attributed. A supplementary argument in favour of Anbouba's correc­
tion is the following: the work I~liiQ al-Makhrutat ("The Reform of Conics"), Alger 
MS 1446(10) is attributed to the second Abu Ja'far. However, examination shows 
that this manuscript is identical to the one explicitly attributed to al-Khlizin: Bodleian, 
Huntingdon MS 237, ff. 78v-123v. 

6. Leiden, Or. MS 168(14), ff. 116'-134'. 
7. Here, as in al-Khlizin's text, two terms are used to designate primitive triangles: 

"principle of kinds" - a~lu al-ajnas - or "primitive" - awwalf. 
8. "Ancient" means "Hellenistic". 
9. Bib!. Nat., Paris, Fonds arabe MS 2457/49, ff. 204'-215'. This manuscript was 

transcribed in 359 of the Hegira (969) by the mathematician al-Sijzl. 
10. Epistle, f. 204. 
11. Ibid., f. 204v. Note that "evenways even" designates numbers like 2n. See Nicomachus 

of Gerasa (1866, p. 15. !. 4-10). See also Thlibit b. Qurra's translation (1958, p. 
20, !. 23-25 and 21, 1. 1-2). See also Euclid's definition in the Elements, book VII, 
def.8. 

12. Epistle, f. 205'. 
13. Ibid. 
14. A triplet (x, y, z) is called primitive if three numbers are co-prime. 

15. AI-Khlizin calls (y + ~ ) "a composite number" and ~ "the difference". 

16. Epistle, ff. 206v-207v. 
17. Ibid., f. 207v. 
18. Ibid., ff. 207v-208'. 
19. Ibid., ff. 208v-209'. 
20. Ibid., f. 209'. 
21. Ibid., ff. 209v-211'. 
22. See Arithmetica, II-ll; and also Itard's commentary (1967, pp. 46ff.). 
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23. Epistle, f. 212" I. 2. 
24. Ibid., f. 213'. 
25. Ibid. 
26. Ibid., ff. 213'-214'. 
27. Ibid., f. 214'. 
28. Ibid, ff. 2W-215'. 
29. See al-Khazin's Epistle to al-l:lasib, Bibl. Nat., Paris, Fonds arabe MS 2457, f. 86'. 

See also Woepcke's translation (1861, p. 39). 
30. Bodleian, Thurston MS 3, f. 140'. 



2. IBN AL-HAYTHAM AND WILSON'S THEOREM 

In 1770, Edward Waring (1770, p. 218) recorded the birth certificate 
of Wilson's theorem in two sentences: 

S' . & 1 x 2 x 3 x 4 ... (n - 2) x (n - 1) + 1 .. 
It n numerus pnmus, n ent Integer numerus, 

1 x 2 + 1 1·2·3·4 + 1 1·2·3·4·5·6 + 1 
e.g. 3 = 1, 5 = 5, 7 = 103 etc. Hanc maxime 

elegantem primorum numerorum proprietatem invenit vir clarissimus, rerumque 
mathematicorum peritissimus Joannes Wilson Armiger. 

Though this theorem had always been attributed to Wilson, at no 
time did E. Waring intimate that the latter had proved it; moreover, all 
the evidence goes to show that Wilson did not possess the proof of the 
theorem that bears his name. Therefore, after quoting this and other 
related theorems, Waring (1770, p. 218) writes: 

Demonstrationes vero hujusmodi propositionum eo magis difficiles erunt, quod nulla fingi 
potest notatio, quae primum numerum exprimit. 

Wilson's priority, unanimously accepted by historians until then, was 
only to be shaken by greater knowledge of Leibniz's manuscripts. At 
the end of the last century Vacca was able to discover an equivalent 
formulation of this theorem in Leibniz's work, and consequently, much 
earlier than that of Wilson. And actually Leibniz's text leaves no room 
for doubt: 

Productus continuorum usque ad numerum qui antepraecedit datum divisus per datum 
relinquit 1, si datus sit primitivus. Si datus sit derivativus, relinquet numerum qui cum 
dato habeat communem mensuram unitate majorem.! 

Leibniz's proposition may be translated as follows: 

If p is a prime number, then (p - 2)! == 1 (mod p). 

This theorem was not to be proved until 1771. Lagrange himself 
gave the proof in two ways: the first was direct; the second consisted 
of deducing Wilson's theorem from Fermat's small theorem. Moreover, 
Lagrange (1869, 3, pp. 425-434) proved the reciprocal of Wilson's 
statement, so we finally arrive at the following theorem: 

238 
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If n > 1, the two following conditions are equivalent: 
(a) n is prime 
(b) (n - I)! == -l(mod n). 

239 

This is the picture of the known history of Wilson's theorem. However, 
well before Leibniz, a tenth-century mathematician stated the same 
theorem in terms just as precise as those of Waring. We are going to show 
that in his Opuscula (whose edition and translation are presented here),2 
the famous mathematician and physicist Ibn al-Haytham (d. after 1040), 
in the course of his solution of the problem of linear congruences, 
introduced Wilson's theorem as a proposition that clearly states "a 
necessary property" of prime numbers, in other words a property 
belonging to them "exclusively". 

A good method is to start by following Ibn al-Haytham's own order 
of exposition to see how he set the so-called theorem in his own study 
and grasp the function he assigned to it. 

In his Opuscula Ibn al-Haytham proposes to solve the system 

{
X = 1 (mod mj) 

x ~ 0 (modp) 
(1) 

with p a prime number and 1 < mj ~ p-1. We are therefore confronted 
with a particular case of the famous Chinese theorem. 3 

After affirming that it concerns a problem admitting an infinity of 
integer solutions, Ibn al-Haytham suggests two methods for solving 
it. The first was designated by the author as "canonical" or normal; in 
fact it only gives one solution. As for the second, it enables him to find 
all solutions. However, it is precisely the first, "normal" method that is 
based on Wilson's theorem, stated verbally and equivalent to the 
following: 

if p is any prime number, then the sum 

2.3 ... (p - 1) + 1 

is divisible by p; and if we divide it by anyone of the numbers 
2, 3, ... , (p - 1), the remainder will always be the unit. 

This theorem clearly enables to obtain the solution of (1): 

x = (p - I)! + 1. (2) 

This preceding value does in fact immediately satisfy the first equation 
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of (1) and also verifies, according to the theorem, the second equation 
of (1). 

Ibn al-Haytham then introduces his second method capable of pro­
viding all solutions. This method was explicitly based on three ideas, two 
of which may be considered technical lemmas. Let us present them as 
they appear in the Opuscula: 

(a) if m is the ppcm of mi ; then (p, m) = 1. 
(b) if Xo is a solution of the first equation of (1), 

then the general solution of this equation is of the form 

x = Xo + Am (A an arbitrary integer) 

(c) if r is such that 

m = r(mod p) (0 < r < p), 

then (r, p) = 1. 
Now write (1) 

{
X = 1 
x=O 

(mod m) 
(mod p) 

and find a number s such that 

{ S-I=O 
x =0 

(mod r) 
(mod p) 

(3) 

(4) 

Let s = p + kp. The number (p + kp) satisfies the second equation of 
(4) whatever k. Therefore find the smallest integer k such that (p + kp) 
satisfies the first equation of the system. In this case, we must have 

(p - 1) + kp = 0 (mod r). (5) 

As it appears in the Opuscula, Ibn al-Haytham's approach appears 
strictly inductive: to satisfy (5), he adds p to the number (p - 1) as 
often as necessary. 

But as close examination shows, Ibn al-Haytham does not fail to 
observe that this approach was only possible if (p, r) = 1. What does 
this requirement mean? It can be supposed here that Ibn al-Haytham 
was somehow acquainted with Bezout's theorem. In fact, as (p, r) = 1, 
there exists k and h natural integers such that 

(k + 1) p - hr = 1 (6) 
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Let ko and ho be the smallest integers verifying (6). We have finally 

s=p+koP 

or 

hence 

s = 1 + hor 

s - 1 
ho=--· r 

Now consider the number m(s - 1) + 1; it verifies the first equation 
r 

of (3). 
But this number is rewritten 

mho + 1 with m = pq + r 

hence 

mho + 1 = hoPq + hor + 1 = (hoq + 1 + ko)p, 

which verifies the second equation of (3). The smallest solution sought 
is therefore 

(s - 1) 
x=m--+l= mho+l 

r ' 

and the general solution is written: 

m m 
x = - [(s - 1) + nrp] + 1 = - [(p - 1) + (ko + nr)p] + 1 

r r 

or 

x = m(ho + np) + 1; 

therefore 

x == (mho + 1)(mod p). 

If, like Ibn al-Haytham, we note k = ko + nr in the general solution, 
this number corresponds to the general solution of equation (6) which 
also gives h = ko + np. Once again we may ask ourselves if Ibn 
al-Haytham's inductive method was not intended as an attempt to solve 
Bezout's equation. 
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The above exposition leads to the heart of the problem of Wilson's 
equation. Of the two methods Ibn al-Haytham proposed for solving the 
system of congruences and thus achieve the aim of his OpuscuZa, the 
second is sufficient since it enables to obtain the general solution. And 
we shall see both Ibn al-Haytham's Arab and Latin successors had 
perfectly grasped this point since they only retained the second method. 

Therefore, if Ibn al-Haytham insisted on presenting the first method, 
distinguished moreover by the attribution of a title - canonical or 
normal -, it was because he aimed at Wilson's theorem itself. 

So Wilson's theorem therefore appears as a result based on a reflec­
tion on the properties of prime numbers for solving the famous "Chinese 
problem", but in a sense independent of this very solution. 

It should be noted again that both methods reveal what the above 
analysis implies: Ibn al-Haytham was somehow acquainted with Bezout's 
theorem. If this was the case, he should have been in a position to prove 
Wilson's theorem. But for lack of contemporary documents that give 
Bezout's theorem "as such" and not just implicitly, any conclusion on 
this issue remains doomed to conjecture. This is nevertheless the 
direction that two series of arguments oblige us to follow. 

Firstly, several recent discoveries in the history of mathematics of 
this period have shown that it is often risky to accept as a historical 
fact what is simply the result of our current ignorance, itself ascribable 
to texts which are temporarily or definitely lost. 

Nevertheless, our knowledge of works on number theory at that period 
still remains, it is true, fragmentary and even more so since many of them, 
including those of Ibn al-Haytham are lost for the time being. For lack 
of sources, the historian is therefore obliged to rely on conjecture. 

However, an examination of the standard already attained in number 
theory at this period, combined with a reflection on Ibn al-Haytham's 
approach set in the terms of Bezout's theorem, renders the assumption 
that the latter must have been unknown to tenth-century mathemati­
cians highly unlikely. To which it must be added that this theorem was 
not only known to Indian mathematicians4 but appeared, for particular 
cases at least, in a text directly dependent on Arabic mathematics. 5 

Secondly, the very way in which Ibn al-Haytham set forth Wilson's 
theorem is further confirmation of this approach. Any reader, somewhat 
familiar with Ibn al-Haytham's writings on mathematics and optics, 
cannot ignore either his scrupulous requirements for proof, or the 
prolixity of his supplementary commentaries addressed to the reader. Both 
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characteristics are sometimes pushed to the extreme, and thus excessively 
lengthen his exposition, without affecting its clarity. 

However, in the Opuscula analyzed here, more particularly when it 
concerns the statement of Wilson's theorem, for once the exposition 
surprises by its conciseness, all the more so since the author implies 
that he has formulated an essential property of prime numbers (and we 
are in fact in the presence of one of the first criteria capable of 
identifying prime numbers). 

It may therefore be concluded that Wilson's theorem was not intro­
duced for the first time in this Opuscula, but was included as a 
proposition familiar to the reader. We might have found in Ibn al­
Haytham's other works on number theory explanations of how he proved 
this theorem, and as a result, what he knew about Bezout's theorem, 
but those works, as we said, still remain lost. 

So our question becomes more precise: how was Ibn al-Haytham 
able to prove Wilson's theorem? If we accept the conjecture that he knew 
Bezout's theorem as plausible, we may reconstitute his method as follows: 
set 

E = {I, 2, . . . , p - I} 

and show: if a E E, then there exists bEE, unique, such that 

ab == 1 (mod p). (7) 

Since (a, p) = 1, there exists at least one couple of integers (x, y), such 
that 

ax - py == l(mod p) 

hence 

ax == l(mod p). 

Let b be the remainder of the division of x by p. We know b is unique, 
bEE; b verifies (7). But a and b can be equal. In this case we have 

a E E and a2 == 1 (mod p) ~ I:: f (mod p), 
a==-1 (modp) 

or 

therefore a = 1 or a = p - 1. For instance, for any a E E, such that 
a "::f:. 1 and a "::f:. p - 1, there exists bEE, b "::f:. a, such that we have (7); 
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hence 

(p - I)! == -1(mod p). 

This was apparently the method adopted by Ibn al-Haytham. There 
exists, it is true, another proof given by Carmichael (1929, pp. 44, 45) 
using inscribed polygons, requiring nothing unknown to Ibn al-Haytham, 
and only including means he often used in other works. Nonetheless, it 
remains that if we establish a relation between the ideas of both methods 
of solving the problem of linear congruences, the above reconstitution 
is the most plausible. 

Again we should ask ourselves why Ibn al-Haytham stated this 
question whose solution led him to apply Wilson's theorem. To clarify 
the context in which Ibn al-Haytham's problem is stated, let us turn for 
a moment to his successors. Let us consider, for example, a thirteenth­
century treatise on algebra,6 still unedited, where everything indicates 
that it was designed for teaching and was in fact more a compilation than 
a piece of original research. Ibn al-Haytham's problem is to be found 
in a chapter dealing primarily with Diophantine analysis, where the 
author, after an exposition of some of the basic principles of the 
Pythagorean theory of triplets, first deals with some second-degree 
Diophantine problems,? and finally gives the solution of Ibn al-Haytham's 
problem. He then writes: "To find a number such that if divided by 2, 
3, 4, 5 or 6, one remains, and if divided by 7 nothing remains". He 
presents his solutions as follows: 

Let us then find the smallest common multiple number by which we divide, we find 
sixty, to which we add the unit that the enquirer suggested as a remainder. We have 
sixty-one. If we divide it by seven, five remains which we subtract from 7; 2 remains. 
By induction we find a number such that, if we multiply it by sixty and if we divide 
the result by seven, two remains. We find four. We multiply four by sixty, and obtain 
240. If we divide it by seven, two remains, as we said. We add 240 to 61, we have 301, 
which is the number sought. This problem can include impossible cases.s 

The summary by the thirteenth-century mathematician is quite inferior 
to Ibn al-Haytham's text. Whether the problem was borrowed directly 
from Ibn al-Haytham or a compiler is unimportant here; it should only 
be observed that the method relating to Wilson's theorem disappears to 
the advantage of the second9 which alone remains and may be formu­
lated as follows: 
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The system (1) is rewritten in the form: 

{ (1) x == a (mod m), 
(m = 60, p = 7, a = 1, b = 0); 

(2) x == b (modp) 

we have x' = a + m the solution of (1). Let z be the residue (mod p) of 
x', then 

x' = a + m == z(mod p) (z = 5). 

Given y such that 

y + z == b(mod p) (y = 2). 

Suppose t found such that mt == y(mod p) and put x = x' + mt; then 

x == x'(mod m) = (a + m)(mod m) == a(mod m), 
x = x' + mt == x' + y(mod p) == (z + y)(mod p) == b(mod p). 

Therefore it remains to solve 

mt == y(mod p). 

In other words, it remains to solve the equation 

mt - pk = y 

i.e. 

60t - 7k = 2. 

By continuous fractions we obtain t = 4 and k = 34. 
To be understood mathematically, this reformulation like that of Ibn 

al-Haytham, supposes a knowledge of Bezout's theorem; it has however 
the advantage over the former of illustrating the context wherein the entire 
problem is situated. As understood by Ibn al-Haytham's successors and 
this thirteenth-century mathematician in particular, it concerns a study 
belonging to new Diophantine analysis, a discipline that arose out of 
the encounter between two traditions in the tenth century: one was 
number theory in the sense of Euclid's Arithmetical Books, the other 
found its full extension after the translation of Diophantus' Arithmetica. 

Various commentaries on Euclid, stemming from the first tradition, 
including those of Ibn al-Haytham himself, are known to us. Let us 
also mention the new results obtained by Thftbit ibn Qurra in his study 
of perfect and amicable numbers. Whatever these results, they all refer 



246 CHAPTER IV 

to an identical concept of arithmetic: the arithmetic of integers repre­
sented by line segments where one can only proceed using proofs similar 
to those of Euclid in the Elements, themselves made possible by this 
representation of numbers. The norm for proof was not only restric­
tive; rather for Ibn al-Haytham it made explicit the distinction between 
the two kinds of arithmetic; the one found in the work of Nicomachus 
of Gerasa, and that of the Elements. While the former only proceeded 
by induction, the latter was based on proofs. To designate the first kind, 
Arabic mathematicians retained the Greek term, 1'1 apt~IlTl'tt1dt, with 
its phonetic Arabic transcription, al-arithma!fqf, whereas the term Cilm 
al-cadad, "the science of numbers", was applied to the second. 

This was how Ibn al-Haytham himself differentiated between them: 

Properties of numbers are shown in two ways: the first is by induction, since if we take 
the numbers one by one and if we distinguish between them, we find by distinguishing 
and considering all their properties, and to find the number in this way is called 
al-arithmii(iqf. This is shown in a book on al-arithmiiffqf [Nicomachus of Gerasa). The 
other way of showing properties of numbers proceeds by proofs and deductions. All 
properties of numbers grasped by proofs are contained in these three books [of Euclid) 
or in those which refer to them. 10 

As for the second tradition, we showed elsewhere ll that the intro­
duction of Diophantus' Arithmetica in the tenth century lay at the 
beginning of the new Diophantine analysis; it concerns Diophantine 
integer analysis, no longer based on an algebraic, but a Euclidean 
reading of Diophantus' work. Even if the authors of the new Diophantine 
analysis such as al-KhujandI or al-Khazin, for example, were able to 
borrow a number of methods of proof from algebra, notwithstanding 
this they clearly distinguish between their work and that of the 
algebraists. They thus deal with several themes, the most important of 
which are: the theory of Pythagorean triplets, the problem of congruent 
numbers, the representation of integers as the sum of squares, the 
impossibility of integers of the Diophantine equation x3 + l = Z3, etc. 
It was investigations such as these that led mathematicians, so to speak, 
to take an interest in problems which later became part of the theory 
of congruences. 

Let us leave this general outline of Diophantine analysis in the tenth 
century to return to the case of Ibn al-Haytham. Firstly, it should be 
recalled that though he belonged to the Euclidean tradition for number 
theory, he also wrote a commentary on the five books of Diophantus' 
Arithmetica 12• It is also known that he composed several works on the 
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theory of number and arithmetic,13 of which, unfortunately, only the titles 
remain; but at least we know that he dealt with Diophantine analysis 
in those works. A passage quoted by the twelfth-century algebraist 
al-SamawJ al l4 is proof that he was also interested in numerical right-angle 
triangles, a theme privileged, so to speak, by the new Diophantine 
analysis. 

So it was therefore within the framework of new Diophantine analysis 
that the problem of linear congruences quite naturally arose, and within 
this same framework that the theorem incorrectly named after Wilson 
was stated. 

In the name of God, the Clement and Merciful. 
God the Almighty 

A TREATISE BY AL-I;IASAN B. AL-I;IASAN B. AL-HAYTHAM ON 

THE SOLUTION OF A NUMERICAL PROBLEM* 

Problem 

To find a number such that if we divide by two, one remains; if we divide 
by three, one remains; if we divide by four, one remains; if we divide 
by five, one remains; if we divide by six, one remains; if we divide by 
seven, there is no remainder. 

Solution 

The problem is indeterminate, that is it admits of many solutions. There 
are two methods to find them. One of them is the canonical method: 
we multiply the numbers mentioned that divide the number sought by 
each other; we add one to the product; this is the number sought. I 
mean to say we multiply two by three, the product by four, then the 
product by five, and finally the product by six; we then add one to the 
product; this is the number sought. 

The product of these numbers by each other according to the order 
mentioned is 720; we add one to 720, we have 721 which will be the 

* Translated from the Arabic: MSS Loth '134 (f. 121), India Office Library and Tehran, 
Milli Malik 3086, f. 62v--66'. 
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number sought, because 720 is divisible by two since it has a half, by 
three since is has a third, by four since it has a quarter, by five since it 
has a fifth, by six since it has a sixth. Therefore, if 720 is divided by each 
of these numbers, then if we divide 721 by each of these numbers, one 
always remains, and 721 is divisible by seven because it is a seventh. 
The number sought corresponding to the property mentioned above is 
721. 

We can find the number sought by another method, which is the 
method by which we show that this problem has several solutions and 
even an infinity of solutions. It consists of finding the smallest number 
that has a half, a third, a quarter, a fifth and a sixth, i.e. the smallest 
multiple number of the numbers under seven, which is sixty. We divide 
sixty by seven, four remains. We then seek a number that has a seventh 
such that if we subtract one, the remainder has a quarter. There are 
many numbers that possess this property: the method to find these 
numbers is to take seven, subtract one, six remains; we add seven, seven, 
to six until we reach a number that has a quarter. If the [repeated] addition 
then gives a number with a quarter, we add one to this number. The 
sum will have a seventh. 

Example. We add seven to six, we have 13 which has no quarter; 
we then add seven to 13, we have twenty which has a quarter; we then 
add one to 20, we have 21 which has a seventh. We take a quarter of 
20 which is 5, we multiply it by 60, we therefore have 300, to which 
we add one; we therefore have 301, which is the number sought and thus, 
since 300 has a half, a third, a quarter, a fifth, a sixth, therefore three 
hundred is divisible by 2, 3, 4, 5 and 6. 

And if three hundred is divisible by these numbers with no remainder, 
then if we divide three hundred and one by each of these numbers, one 
remains and 301 has a seventh, it is therefore divisible by 7 and nothing 
remains. Therefore 301 is the number sought. 

Similarly, if we take six to which we add seven, seven until we obtain 
the sum 20, to which we then add seven, seven, four times, the sum 
will have a quarter, and if we add one the sum will have a seventh. If 
we add seven, seven, four times to 20, that gives 48 which has a quarter, 
and if we add one to 48, we have 49 which has a seventh. We then 
take the quarter of 48 which is 12 which we multiply by 60; we then have 
720 to which we add one, we have at last 721 which is the number sought, 
and which is the number obtained by the first method. 

Similarly, if we add seven, seven, four times to 48, that will give 76 
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which has a quarter; if we add one to 76, that will give 77, which has 
a seventh. We take a quarter of 76, which is 19, which we multiply by 
60, we will then have 1140, to which we add one; we therefore have 
1141, which is the number sought, since 1140 has a half, a third, quarter, 
a fifth and a sixth, and 1141 has a seventh. Similarly, if we add seven, 
seven, four times to 76, we have 104; if we take its quarter which is 
26, if we multiply it by 60, and if we add one to the product, we have 
the number sought. And so on indefinitely, * each time we add seven 
to the number obtained, seven, four times, we take the quarter of the sum, 
we multiply it by 60 and we add one, we have the number sought. 

In this way, there may be found an infinity of numbers where each 
one is divisible by 2, 3, 4, 5, 6 and has one as remainder, and where 
each one is divisible by seven. If this is the case, instead of adding seven, 
seven four times, to 20 and taking a quarter of the sum, we add to five, 
which is a quarter of 20, seven once, and we obtain 12. And similarly, 
for 48, instead of adding seven, seven, four times and taking the quarter 
of this sum, we add seven once to 12. The method for finding the numbers 
sought is to take a quarter of twenty which is five, to which we add seven, 
seven and so on, indefinitely. If we then multiply each of these numbers 
by sixty, and if we add one to the product, each of the numbers obtained 
according to this order is the number sought. This is the solution to the 
problem. 

Having shown this, we say that this property** is necessary for any 
prime number, that is for any prime number - which is the number that 
is only a multiple of the unit - if we multiply the numbers that precede 
it by each other in the way shown, and if we add one to the product, 
then if we divide the sum by each of the numbers that precede the 
prime number, one remains and if we divide by the prime number, there 
is no remainder. 

And, similarly, according to the second way, if we find the smallest 
multiple number of the numbers that precede the prime number, that is 
the smallest number whose homonymous parts are the numbers that 
precede the prime number; if then we divide this number by the prime 
number, we keep the remainder and keep the homonymous part of this 
remainder to use it as a measure; for example, if we divide the number 
60 by 7, four remains whose homonymous part is a quarter which is 

* Literal meaning: perpetually. 
** Literal meaning: notion, concept. 
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the measure. The homonymous part of a number is the number that 
divides the number of which it is part as many times as there are units 
in the number which we said is its homonym. We therefore keep the 
homonymous part of the remainder; we take the prime number from 
which we subtract one, as we did for seven, we add the prime number 
to the difference* as many times as necessary until we arrive at the 
number which has the remainder as homonymous part, that is the part 
kept. 

From the number obtained, we take the homonymous part of the 
remainder and we multiply it by the number which is the smallest number 
whose homonymous parts are the numbers that precede the prime number, 
we add one to the result, what we obtain is the number sought. If we 
add to the number that is the homonymous part of the remainder the prime 
number as many times as one wants, if we multiply each of these numbers 
by the number that is the smallest number that has the parts mentioned, 
successively, and if we add to each of them the number one, each of 
the numbers obtained according to this property is the number sought. 
For instance, if we multiply each of the numbers 12 and 19 by 60 and 
if we add one to each of their products, we have the number sought [each 
time]. Therefore, if we divide (one of the numbers obtained according 
to this property) by the smallest number whose homonymous parts are 
the numbers that precede the prime number, the remainder is only one. 
If we subtract one from the prime number and multiply the difference 
[after dividing the smallest number whose homonymous parts are the 
numbers that precede the prime number and after adding the number 
seven to the result as often as one wants] by the smallest number, whose 
homonymous parts are the numbers that precede the prime number, we 
add one to the result and we have the number sought. 

If we follow this method for any prime number, then for any number 
found in this way, if we divide it by each of the numbers that precede 
the prime number, one remains and if we divide by the prime number, 
there is no remainder. 

What we have just mentioned includes the answers to all problems 
of this type and may God assist us. 

Tbe answer to the numerical problem is found. Praise be to God 
Lord of the World; Blessed be his Prophet Muhammad, the Elected one 
and all his own. 

* Literal meaning: remainder. 
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NOTES 

1. Vacca (1899, p. 114, n. 2). Mahnke (1912, p. 42 note) was justified in writing: 
"Leibniz hat nun seinen induktiv gefundenen Satz noch bei der niichsten Primzahl, 
p = 17, nachgepriift, sich dabei aber verrechnet. Er gibt niimlich an: 11! ;;; 16 ... 
IS! ;;; 16, 16! ;;; l(mod 17), wiihrend in Wirklichkeit 11! ;;; 1 ... IS! ;;; 1, 16! ;;; 16 
ist. Durch diesen Rechnenfehler ist er veranlasst worden, seinen richtigen Satz 
abzuiindem und noch den falschen Zusatz zu machen: ... relinquit {I vel comple­
mentum ad I}, d.h. p - 1. In der Tat ist ja bei seiner Rechnung IS! ;;; 17 - 1, 
wiihrend in Wirklichkeit IS! ;;; 1 ist. So erkliirt sich dieser falsche Zusatz, der Vacca 
unverstiindlich war". 

2. Wiedemann (reprint 1970, see 1, pp. 529-531) made a paraphrase not a rigorous 
translation into German of this text, edited here for the first time. 

Wiedemann's summary was published a second time (1926-7, vol. 2, p. 756). 
This eminent historian did not remark that Ibn al-Haytham stated and used Wilson's 
theorem. 

3. Shanks (1978), pp. 204-205. 
4. Colebrooke (1817). See the introd., pp. xvii, xviii and Bhaskara'sArithmetic, ch. XII, 

notably pp. 115 and 116 where he solved the equation 100x + 90 = 63y. See also 
Brahmagupta's Algebra, ch. 1. 

5. Curtze (1902). 
6. Nar al-daliila Ii Cilm al-jabr wa al-muqabala by cAbd al-cAzIz b. cAbd al-Jabbar, 

University of Tehran, MS.4409, 64ff. The author mentioned the "master of his master 
Sharaf ai-DIn al-TUs!". As the latter died in the early thirteenth century, we may 
assume that our author lived in the first half of the same century. The entire 
manuscript'is devoted to arithmetical algebra and is apparently a comprehensive 
summary of al-Samaw'll's treatise al-Bahir (see below). It is therefore basically a 
study of elementary arithmetical operations on polynomials. This is the precise context 
where the author repeated the formula for binomial development and the table of 
coefficients as given by al-KarajI and related by al-Samaw'aI in al-Bahir. 

7. From the 9th chapter onwards (ff. 40ff.) the author studies problems of Diophantine 
analysis. He starts with the theory of Pythagorean triplets before proceeding to 
examine other Diophantine problems. As it is exactly within this framework that 
he takes up Ibn al-Haytham's problem, let us give some examples of the problems 
dealt with so as to reconstruct the context. Therefore, let (x, y, z) be a Pythagorean 
triplet; the author gives the following propositions and identities: 

Z2 ± 2xy = a,z, 
2(z - x)(z - y) = [z - (x + y)]2, 
2xy + (x + y + d = 2(x + y + z)(x + y). 

Next he solves the problem of congruent numbers: 

{ r + a = yr, 
r - a = y~. 

Then he deals with problems borrowed from Arabic predecessors or the translation 
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of Diophantus' Arithmetica; as, e.g.: 

{ 
~ + Y + z = a, 

2'xy = a. 

{
X + Y = a, 
x + b = yr, 
y + c = Yi. 

He then deals with the problem of the representation of an integer by the sum of 
two squares, a problem raised in Diophantus' Arithmetica II-19 and taken up by 
Arabic mathematicians such as al-Khlizin who worked on Diophantine integer 
analysis. For instance he states: 

Let N = a2 + b2 , then N can be decomposed into the sum of two squares 
in a infinite number of ways. 

To prove this proposition, he recalls the following two identities, both explic­
itly stated by al-Khlizin: 

Now, let 

(xi + Yr)(xi + y~) = (XtY2 ± YtX2)2 + (xtx2 + YtY2)2, 
(u 2 + V 2)2 = (u 2 _ V 2)2 + 4U 2V2• 

A = (a2 + b2) (u2 + V2)2. 

A is rewritten 

hence 

2 b2 [ 2uva + b(u2 - vl) ] 2 [ a(u2 _ vl) _ 2uvb ] 2 

a + = u2 + vl + u2 + v2 

It is clear that if a, b, u and v are integers such that (u, v) = 1 and (u2 + vl) is a common 
divisor of a and b, then the numbers found are integers. He moreover deals with 
several Diophantine problems, as for example: 

{ ~ + x = yr, 
bx2 - x = y~. 

8. Al-Jabbar, Nilr al-dalala ... , op. cit, ff. 59-60. 
9. The problem of linear congruences and its solution is one of many borrowings 

Fibonacci made from Arabic mathematics. A comparison between Fibonacci's 
text, quoted below and that of Ibn al-Haytham, clearly illustrates that the first 
summarized the second. In comparison with Ibn al-Haytham's exposition, this much 
less rigorous summary is not without ambiguity. Similarly, in a text by the thirteenth­
century mathematician Ibn 'Abd al-Jabbar, the method connected with Wilson's 
theorem is occulted in Fibonacci; so that we may ask if the Fibonacci's summary 
is not really based on a compilation of Ibn al-Haytham's Opuscula. Fibonacci writes 



NUMBER THEORY 259 

as follows (1857, pp. 281-282): "Est numerus qui, cum diuiditur per 2, uel per 3, 
uel per 4, aut per 5, seu per 6, semper superat ex eo 1 indiuisibile; per 7 uero 
integraliter diuiditur. Queritur, qui sit numerus iIIe: quia preponitur, quod semper 
superat 1, cum diuiditur per 2, uel per 3, uel per 4, uel per 5, uel per 6; ergo extracto 
ipso 1 de numero, diuidetur residuum per unumquemque suprascriptorum integraliter: 

quare reperias numerum, in quo reperiantur ~ tit i ; eritque numerus iIIe 60; 

quem diuide per 7, superant 4, qui uellent esse 6. Ideo quia totus numerus per 7 diuid­
itur; ergo numerus, qui fuerit unum minus eo, cum per 7 diuidatur, 6 inde superare 
necesse est, hoc est 1, minus septenario numero: quare duplicetur 60, uel triplicetur, 
uel multiplicetur per alium quemlibet numerum, donee multiplicatio ascendat in talem 
numerum, qui cum dividatur per 7, remaneant inde 6; eritque numerus iIIe 5, in 
quo 60 multiplicanda sunt; ex qua multiplicatione ueniunt 300: quibus superaddatur 
1, erunt 301; et talis est numerus ilIe. Similiter si 420, que integraliter diuiduntur 
per omnes predictos numeros, addideris cum 301 semel, uel quotiens uolueris, 
procreabitur numerus quesitus semper, uidelicet qui diuidetur integraliter per 7, et per 
omnes reliquos, cum diuisus fuerit, remanebit 1." 

10. Ibn al-Haytham, Shar/;l mu~lidarlit Kitlib Uqlidis, "Commentary on the Premises of 
Euclid's Elements". Feyzullah, Istanbul, MS 1359, f. 213·. 

11. Supra, pp, 205-237. 
12. We know from the thirteenth-century bibliographer, Ibn Abi U~aybiCa (ed., 1965) that 

Ibn al-Haytham dictated five books of commentaries "on Diophantus' work on 
algebraic problems" to Isl)aq b. Yiinus, an Egyptian doctor. 

13. Among the works on number theory quoted by Ibn Abi U~aybiCa (ed., 1965, p. 
554) based on Ibn al-Haytham's handwritten list is "The sum of principles of 
arithmetic" ·and described by Ibn al-Haytham as follows: "It is a book where I have 
determined the principles of all kinds of arithmetic starting with what Euclid set down 
in the Elements of Geometry and Arithmetic. I have seen to it that the solution of 
arithmetical problems is conducted according to geometrical analysis and numer­
ical determination. In this book I have avoided what algebraists have laid down as 
well as their expressions". 

14. It concerns a problem of right-angle number triangles: to show how to construct a 
right-angle triangle such that one of its two sides is equal to the given number. It 
therefore means solving the problem in integers 

a2 + i = i (a given); 

Ibn al-Haytham sets 

hence 

a2 - 1 
Y=-2- . 

a2 + 1 
z= -2-· 

This method, equivalent to the one related by Proclus in his Commentary on the 
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First Book of Euclid's Elements, only gives one solution. AI-Samaw'al justifiably 
criticized this method and formulated another which gives an infinity of solutions, 
by setting 

AI-Samaw'al's generalization was quite clearly suggested by the first method. See 
AI-Samaw'al (ed., 1972, p. 148 of the Arabic text, p. 65 commentary in French). 



3. ALGEBRA AND LINGUISTICS: 

COMBINATORIAL ANALYSIS IN ARABIC SCIENCE 

If we set aside probability theory, combinatorial analysis was most often 
exercised within the scope of two disciplines: algebra and linguistic 
studies whether of language in general or the language of philosophy.! 
Everyone knows that, especially since the early eighteenth century, 
notably with Bernoulli and Montmort,2 combinatorial analysis expanded 
rapidly in answer to the needs of probability theory, insofar as it con­
cerned problems of partition of sets of events and not exclusively 
numbers. It is common knowledge, moreover, that before the favourable 
encounter for the unprecedented development of combinatorial analysis, 
algebraists and linguists had already produced and used some of its 
methods. At least this is how Arabic mathematicians and linguists 
discovered combinatorial analysis. 

A closer look reveals that, as was still the case to a certain extent in 
the sixteenth if not the seventeenth century, Arab scholars separate what 
we combine, though only recently, in the concept of combinatorial 
analysis. While the algebraist had difficulty in recognizing the instrument 
the linguist employed as his own, the linguist endeavoured to reinvent 
an instrument of which the algebraist already possessed some elements. 
This fragmentary theoretical awareness was, moreover, discreet in Arabic 
science and it was not felt necessary, as in the seventeenth century, to 
designate combinatorial analysis by any particular name. It seems the 
linguist discovered combinatorial methods quite naturally when he 
undertook a logical exploration of certain linguistic phenomena. As for 
the algebraist, he designated procedures, but not yet an activity which, 
as an organized activity, would require the attribution of a title. However, 
questions about the fragmentation and discreteness of theoretical aware­
ness - the unity of combinatorial analysis - imply differentiating between 
the specific goals of the linguist and the algebraist. We shall see that, 
if for the linguist combinatorial analysis was a means of rationalizing 
an old practice, for the algebraist it was, all things considered, just a 
technical instrument to base a theoretical problem: a different concept 
of algebra or rather the project of autonomous algebra. An instrument 

261 
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in both cases, it should undoubtedly be emphasized that it was, firstly, 
a means of solving a practical problem theoretically, and secondly, a 
means forged in the course of the solution of a theoretical problem. 
The difference in projects is, in our opinion, responsible for the misun­
derstanding in which the unity of combinatorial analysis was held, but 
if this difference is overlooked, the gates are flung wide open to mis­
interpretations about combinatorial activity, by unifying what scholars 
see as unrelated and complex. 

Again it should be noted that both meanings of combinatorial analysis, 
whatever their difference, share at least one condition of possibility which 
may be briefly summarized as a change in the relationship between two 
terms: science and art. To found the autonomy of algebra is to aim 
towards its constitution as a science, but this amounts to admitting that 
a science could also be an art, therefore capable of being without the 
assurance of an object because it has several - arithmetic and geometry 
- in short, to conceive science without any predication of being. The 
linguist by his conception of the technical treatment of art, that of the 
lexicogr~pher, also abolished an old distinction between science and 
art insofar as he intended to attribute scientific status to knowledge 
conceived in its possibilities of practical realization and whose aim is 
external to it. Now, if a clearer understanding of this change refers at 
least partially to the sociology of knowledge,3 it remains that, sensed 
though never grasped, it has been the pretext for judgements about the 
pragmatic spirit of Arabic science in opposition to the theoretical spirit 
of Hellenic science, judgements often reiterated since Renan and later 
on by Duhem and Tannery. 

Within the limits of this paper, it is clearly impossible to write a 
history, however condensed, of combinatorial analysis. But the impor­
tance of the problem is not the only reason why we consider it worth 
discussing. 

In this particular, relatively unknown area of Arabic science we 
also want to make a stand against a certain history of science whose 
erudition does not conceal a bias towards continuity, which often hinders 
the reconstruction of a historically dated and geographically located 
rational activity. Combinatorial analysis is an exemplary case in more 
than one respect since, outside the Hellenic tradition, champions of 
continuity have often considered it a deviant case to be disregarded or 
reduced to so-called "analytical, atomistic, occasionalistic and apoph-
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tegmatic thinking" peculiar to Arab scholars. But if by reconstruction 
we basically mean understanding, the references must be multiplied, 
i.e. this activity must be reconsidered in the light of two series of ques­
tions: one which Arab scholars asked themselves - scientific and 
extra-scientific questions - and others, which mature science will answer 
later. We shall examine in succession the emergence of combinatorial 
analysis in algebra and in linguistics. 

The first recourse to combinatorial analysis in algebra is often dated 
back to the eleventh century and, more precisely, ascribed to a still 
undiscovered work by al-Khayyam: this is the prevailing opinion among 
historians of mathematics. In fact, in the second half of the tenth century 
emerged a certain interest in combinatorial analysis designed to improve 
and extend algebraic calculus in the particular field of algebraic 
equations and problems of the extraction of roots, as the titles of essays 
by Abu al-WafaJ (940-998), and those of the famous astronomer­
mathematician al-BTrunT (973-1048), bear witness. However, this 
historical fact has not received the explanation it deserves. Why did 
combinatorial analysis develop in Arabic science in the eleventh century? 
The question remains unanswered; either it is disregarded altogether or 
allusions are made to the results of a fortuitous influence - still unproved! 
- of Chinese or Hindu science or the result of fate and chance. 

A closer look reveals that it was precisely during the same period 
that the notion of the autonomy and specificity of algebra was developed, 
an autonomy which implied not only a separation from geometry but fur­
thermore, and above all, the arithmetization of algebra.4 Let us summarize 
this programme briefly: arithmetic was applied to algebra so that the latter 
kept for the variables x E [0, 00 [, (x E ]-00, 0] is introduced by the def­
inition x = -y; Y E [0, 00 D, the basic operations of arithmetic: 
+/-, ><1+. The most surprising fact here is that the algebraists who strove 
harder than others to achieve the autonomy of algebra were the very same 
that developed combinatorial methods. This development is seen as the 
outcome of a deliberate return by algebraists to arithmetic following 
the requirements of the new project in order to find necessary means. 
To clarify these affirmations, we must briefly recall how algebra 
developed in the ninth century after al-KhwarizmT (ed., 1939, pp. 16-17) 
and in spite of him. 

Uncertainty about whether to attribute the paternity of algebra to 
Diophantus in order to reserve it for al-KhwarizmI is justified in so far 
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as, unlike Diophantus, al-KhwarizmI considers algebra for its own sake 
and no longer as a means of solving problems of number theory. From 
now on the main object of algebra, as will be repeated later, is "the 
absolute number and measurable magnitudes (being) unknown but related 
to something known in order to be determined". The main object of 
algebraic knowledge is therefore to determine operations "by means of 
which one is in a position to make the above mentioned kind of 
determination of unknowns, whether numerical or geometric". Confronted 
with the diversity of "mathematical beings" - geometrical, arithmetical 
- the unity of the algebraic object is based solely on the generality of 
operations required for reducing any problem to a form or equation or, 
preferably, to one of the six canonical types given by al-KhwarizmI. 

(1) ax: = bx 
(2) ax2 = c 
(3) bx = c 

(4) ax2 + bx = c 
(5) ax: + c = bx a, b, c > 0 
(6) bx + c = ar 

on the one hand, and by the generality of operations for deducing par­
ticular solutions, i.e. a "canon",5 on the other. Insofar as al-KhwarizmI 
abolished, as we said, the opposition between science and art, this object 
- the operations - may be considered an object of science. 

An operation is an object of theoretical knowledge, though without 
reference to a theory of algebraic being. It is also the object of knowl­
edge of an activity whose finality is external to it since conceived in 
its possibilities, either to reduce a problem to a certain form, or to 
derive particular solutions in a perfectly regulated way. A twelfth-century 
algebraist, al-SamawJal, seems to have grasped this situation; for him, 
in algebra unlike geometry, "the beginning of knowledge is the end of 
action and the end of knowledge is the beginning of action". But if the 
abolition of the opposition between science and art - whether dialec­
tical or exclusive for each kind - lies at the origin of the science of 
algebra, to find the specificity of this science implies defining its 
autonomy. Now al-KhwarizmI's algebra was still to confront the obstacle 
of geometrical proof: when he sought to determine the condition for 
the existence of roots to solve second-degree equations, his proof was 
geometrical and his rules for solution only yielded the positive root.6 

While pursuing his investigations, al-KhwarizmI's successors reacted 
against the insufficiency of the geometrical demonstration in algebra 
as we said earlier. However, the sensed need for a numerical proof was 
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itself only possible with the extension of algebraic calculus and its 
domain, then its subsequent systematization. Al-KhwarizmI's imme­
diate successors set to work on this task without delay: Abu Kamil 
(850-930) (Suter, 1910, pp. 100-120; Levey, 1966) integrated irrational 
numbers as an object of calculation in their own right, considered as roots 
and coefficients. Operations required for the solution of systems of linear 
equations with several unknowns and the extraction of roots of alge­
braic polynomials, etc. were developed. The systematization, in particular 
of the theory of equations, was to take place precisely in the tenth century: 
a complete classification of canonical types of cubic equations (10) was 
then attempted, for example, al-Khayyam (Woepcke, 1851). 

The extension and systematization of algebraic calculus permitted 
the formulation of the idea of algebraic proof insofar as they provided 
the elements for a possible realization. In the early tenth century, i.e. 
shortly before al-Khayyam, al-KarajI (late 10th century) one of the 
most active scholars in this field, undertook to provide not only a geo­
metrical proof, but another algebraic proof of the problems under 
consideration. Al-Khayyam was not satisfied with achieving the co­
existence of both proofs but made the reason for it clear in a 
text-programme. After giving the solution of the third-degree equation 
with the aid of conic sections, he writes: " ... and know that the 
geometrical proof of these procedures is not a substitute for their 
numerical proof, when the object of a problem is a number and not a 
measurable magnitude". 7 

In the same vein, al-SamawJal in the twelfth century apparently 
required algebraic proof inasfar as algebra, unlike geometry, is an 
analytical approach to mathematical problems or as he wrote: "algebra 
is a part of the art of analysis, whereas in geometry we can determine 
the unknown quantity without analysis."s 

It was precisely during the extension and systematization underlined 
above of an algebra, one of whose central items is the theory of equa­
tions, that algebraists returned to arithmetic to develop combinatorial 
analysis. It is then understandable why the search for techniques to extract 
any higher degree roots took on such special importance for them. In 
the course of elaborating these techniques they turned towards combi­
natorial analysis to discover, on the one hand, the table of binomial 
coefficients and its rule of formation, on the other, the binomial formula 
for integer powers expressed in words. Lastly, it is known through al-
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SamawJal that al-KarajI constructed Pascal's triangle for this calculation. 
This text included the table of binomial coefficients, its law of formation 

and the development 

n 
(a + bt = L C;an-mbm 

m=O 

for integer n (supra, pp. 66-67). To our knowledge, this is the first 
occurrence of these rules stated in such terms. It had probably been 
formulated by al-Khayyam as well in a work as yet undiscovered. He 
writes in fact in his algebra (Woepcke, 1851): 

The Indians possess methods for finding the sides of squares and cubes, based on such 
knowledge of a small sequence of numbers, i.e. the knowledge of the squares of nine 
figures, that is the squares of one, two, three, etc. as welI as the products formed by 
multiplying them by each other, that is the product of two by three etc. I composed a 
work to prove the correctness of such methods, and I proved that they do in fact lead to 
the object sought. I have, in addition, increased the species, i.e. I have taught how to 
find the sides of a square-square, quadrato-cube, cubo-cube etc. to any extension which 
has not been done before. The proofs I gave on this occasion were only arithmetical proofs 
based on the arithmetical sections of Euclid's Elements. 

Later on in the thirteenth century the same results will be found, except 
that the binomial formula is still expressed verbally: 

n 
(a + bt - an = L C;an-mbm. 9 

m=l 

And again, in the fifteenth century, in al-KashI's Key to Arithmetic. lO 

While combinatorial analysis followed this path in algebra, a parallel 
development was taking place in linguistics. Less important in this case 
for its mathematical results, combinatorial analysis indicated a field 
outside mathematics where it could be exercised. It is this attempt 
neglected by historians of science which we shall now consider. 

The enduring interest Arabs showed in their own language struck 
not only modern Western orientalists but also earlier Arab historians. 
Inseparable from progress in modem linguistics, the surprise of the former 
is prompted not only by the multiplicity and diversity of research in 
linguistics by Arab scholars, but also by a structuralist slant ahead of 
its time to be found in their work, perhaps shared by all who endeavour 
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to analyze their own language as the Hindu example, among many, 
shows. Classical Arab historians saw in it an event as important and 
original as the constitution of logic. 11 In fact, apart from linguists them­
selves, jurists (e.g. al-Ba~rI, 1964, I, pp. 15ff), theologian-philosophers,12 
and classifiers (Meyerhof and ~ubhI, 1932; Ibn ai-Bay tar, ed., 1877-83), 
have, for various reasons, always paid particular attention to a reflec­
tion on language; some for a rational exploration of linguistic phenomena, 
others to solve the arduous question of eternity or the creation of divine 
speech, and still others to present a logical mode for the classification 
of empirical matter: plants, curative substances, etc. For linguists, this 
interest, probably religious in origin, was soon to be secularized. 
Stimulated by a dual necessity to create a conservatory of words and 
meanings, and elaborate the syntactical rules of divine speech in order 
to present the original means of revelation expressed in the language 
of "pagans", this task was dictated by the rapid extension of the new 
religion in the absence of a specific institution for ensuring a standard­
ized interpretation of the sacred word, the prime source for the doctrinal 
unification of peoples of varying languages, cultures and traditions. With 
these motivations relegated to the background, secularization was soon 
to enable early linguistics to treat the sacred word and pre-Islamic pagan 
poetry in the same way. However, for grammarians turned lexicographers, 
what they meant at first by lexicon was a specific glossary on a subject 
or region explaining out-of-date words or difficult meanings. For the 
Arabs, as for other cultures, it concerned lexicons whose scope was 
limited and arrangement uncertain. In such glossaries the underlying 
principle behind the composition or the arrangement of words was 
basically semantic. 

The idea of replacing the work of lexicographic monography by a 
lexicon of all the words of a language arose for the first time with al­
KhalIl Ibn AQmad: it was in answer to this practical problem that 
language was proposed as an object of combinatorial analysis. 

AI-KhalIl aimed at rationalizing the empirical work of the lexicog­
rapher, or better still, seeking a theoretical solution to the practical 
problem of composing a lexicon of the Arabic language. The task was 
not self-evident since the semantic principle of classification common 
to ancient lexicons was difficult to generalize and as a result ineffi­
cient. Such a generalization would have required a founded and exact 
system of concepts. The state of research in semantics in the ninth 
century, not to mention the present situation, did not permit the 
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elaboration of such a system. The composition of a lexicon of a language 
could therefore only be a recomposition, and language was therefore 
subject to analysis for an exhaustive enumeration of all words. 13 Only 
under this condition would any word appear once and once only in the 
lexicon. AI-KhalIl's objective becomes clearer: on the one hand, an 
exhaustive enumeration, and on the other, a bijective mapping of the 
set of words to a lexicon entry; these are its conditions insofar as they 
are the restrictions to which any principle for the composition of a lexicon 
must submit. To these two internal restrictions must be added a third 
external one: the need to devise a lexicon accessible and easy to handle 
for a potential user.14 However, as these restrictions are clearly formal, 
so must the principle of composition be of the same nature. Its consti­
tution therefore requires a preliminary elaboration, if not of a theory of 
the ideal functioning of language, at least a doctrine of all linguistic 
phenomena based on the reconstitution of vocabulary alone, i.e. linguistic 
elements that remain identical when the meaning of words varies. But 
to elaborate this doctrine the lexicographer must be seconded by 
phonologist. Only their collaboration will effectively prepare the rise 
of combinatorial analysis. 

AI-KhalIl's doctrine may be reduced to one basic proposition: 
a language is a phonetically realized part of possible language. 15 If, 
in fact, the r by r arrangement of the letters of the alphabet - with 
1 < r ~ 5 according to the number of letters of the root, as we shall 
see, gives us the set of roots - and, consequently the set of words of 
possible language, wrote aI-KhalIl, only one part, restricted by the rules 
of incompatibility between root phonemes, will constitute a language. 
The compilation of a dictionary therefore implies constituting possible 
language before extracting, in accordance with the so-called rules, all the 
words that comply with them, an important thesis whose formulation 
nonetheless required a phonological study which aI-KhalIl undertook 
at the outset. To achieve this he exploited his knowledge of music as 
he had done earlier in his research on metrics. By distinguishing between 
two levels of analysis - sign and meaning - he was able to reconsti­
tute language from signs alone. This differentiation also suggested 
another: between a regular, musical sound and an irregular, aperiodic 
sound, i.e. between vowels and consonants. Consonants were then 
classified according to their point of articulation. Starting with laryn­
gals and ending with labials, he drew up the following classes (ed., 1967, 
pp. 52-53, 65): 
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1. chl).khg 
2. k q 
3. j sh Q 
4. ~ s z 
5. ! d t 
6. ~ dh th 
7. r I n 
8. f b m 
9. (i a I J 

In some classes he distinguishes between voiced and voiceless letters. 
For instance, in the first class C is voiced while l). is voiceless, in the 
fifth class d is voiced and t voiceless (ed., 1967, p. 64). A study of al­
KhalIl's classification and his explanations in Kitiib al-CAyn, clearly 
reveal, in the light of modem phonetics, that the distribution of sounds 
into groups according to points of articulation, and the opposition 
voiced/voiceless, are generally correctly conceived. However, the order 
of consonants within each class remains rather approximate and al­
KhalIl's pupils, for example, SIbawayh, were to resume his analysis in 
order to perfect it. 

Before applying his knowledge of lexicography to the task in hand, 
the phonologist will first of all exploit it with a view to the morphological 
study of Arabic, thus considerably facilitating the lexicographer's 
approach. 16 He thus discovered the morphological characteristic of Arabic 
and Semitic languages in general: the importance of roots for deriving 
vocabularies and the relatively small number of roots. The root as a group 
of consonants and only consonants, signified, usually attached to a 
generic signifier, could not be viewed as a unit of theoretical analysis 
until the above distinctions between signified and signifier, on the one 
hand, and vowel and consonant, on the other, had been made. Moreover, 
the roots are limited in form, five-letter roots at the most, usually three; 
so to find the number of all possible roots he only needed to calculate 
the permutation of a group of numbers at the most equal to 5. After 
this calculation, aI-KhalIl then turns to the composition of his dic­
tionary. The method is simple: first calculate the number of unrepeat­
able combinations of the letters of the alphabet taken r by r with r = 
2, ... , 5, then calculate the number of permutations of each group of 
r lettersY In other words, he calculated A: = rL C:, n being the number 
of the letters of the alphabet 1 < r ~ 5. 18 For example, for r = 3, this 
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method gives him all the three-letter roots of possible language. These 
phonological and morphological considerations led him to consider a 
problem which Arab linguists after him, like AbU cAlI ibn Faris, Ibn JinnI, 
al-Suyu!I were to develop: the incompatibility between the phonemes 
of a root. Rules of incompatibility 19 enable extraction of a certain number 
of roots from possible language, and thus identify those that should be 
included in the dictionary. We cannot go into details about the rules of 
incompatibility here. Let us summarize them as follows: the first two 
consonants of a root do not belong to the same class of localisation, 
nor rarely to neighbouring classes of localisation. The last two conso­
nants of the root are subject to the same rule but may be similar. Words 
are derived from roots in finite patterns, themselves the object of a 
combinatorial. Neither these patterns nor their combination were as yet 
explicitly recognized by aI-KhalIl. This will only occur when Arabic 
phonology like morphology is considered for its own sake and not 
from a specifically lexicographic point of view. AI-KbalIl's pupils and 
successors were to carry on this work, whereas in the Kitiib al-CAyn the 
derivation of words apparently lacked any obvious rule. 

By way of conclusion, let us recall the following points: 
(1) Combinatorial analysis, developed in different ways by linguists 

and algebraists, was a response to two different goals: one was to solve 
a practical problem theoretically, the other, on the contrary, to provide 
the basis of a theoretical concept. 

(2) The fragmentary and discrete knowledge of the unity of combi­
natorial analysis is seen in the absence of a particular term for designating 
it, and refers to the difference in goals. 

(3) In both cases, however, combinatorial analysis is the result of 
an essential transformation of the concept of the relationship between 
art and science in a tradition outside Arabic Hellenism. In fact this 
transformation sheds some light on the emergence of two scientific 
disciplines that set themselves as a field for the development and the 
exercise of combinatorial analysis. 

In the area of historical reconstruction, these hypotheses of an epis­
temological nature enable us on the one hand, to incorporate into the 
history of science a branch whose exclusion from science was unimag­
inable to ancient Arab scholars; and, on the other, to return to the eleventh 
century for reasons given above to seek texts on combinatorial analysis, 
and consequently, place the appearance of the first known work in this 
field two centuries earlier. As a result epistemological history not only 
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permits therefore the comprehension of a rational activity situated in 
space and time but also ensures a better reconstruction of its history. 

NOTES 

1. As, for example, the philosophical alphabet proposed in Avicenna's "Nayriizia 
epistle", and especially Raymond Lull's attempts, notably in Ars Magna, see Platzeck 
(1964, 1, pp. 298ff.) On the history of Lull's school, see Risse (1964, 1, pp. 582ff.) 

One had wanted to see in combinatorial analysis the origin of a tendency which, 
from Lull to Leibniz, would have led to the foundation of logical calculus. But it 
is now known that, as Risse has clearly shown, there is no continuity between the 
questions and solutions of Lull and his school and Leibnizian thought. Lull's attempt 
was the starting point for a metaphysics, rather than a logic. 

2. It concerns Bernoulli's Ars conjectandi (1713, pp. 72-137), the second part of 
which concerns "The doctrine of permutations and combinations" and the Traite 
des combinaisons composed by Montmort for the second edition of his Essai 
d'analyse sur les jeux du hasard (1713, pp. 1-72). 

3. The field of the sociology of knowledge can for the most part be divided into three 
tendencies. The first wants to explain the configuration of scientific knowledge by 
its connections with the structure of the means and relations of production: this is 
the Marxist thesis. The second finds this explanation in the constitution of collec­
tive representations themselves, the manifestations and constituent parts of collective 
consciousness, whether transcendental as in Durkheim or immanent as in Gurvitch, 
of social totality. The third does not acknowledge that either the sociology of 
knowledge or any other sociology is entitled to "explain" but only to interpret meaning 
by means of eidetic reduction. For Weber as for many others after him, it concerns 
subtracting knowledge from its history in order to understand it as a rather pallid 
projection of an ideal type. 

If, for the first tendency, the achievements have unfortunately not yet exceeded 
the level of affirmations too general to be really demonstrative - such as the rise 
of the commercial bourgeoisie and the beginnings of classical science or "techno­
logical" development in the Renaissance and the beginning of mechanics, as some 
non-Marxists influenced by Marxist thought affirm - both the other tendencies are 
dangerous. The Durkheimian tendency proposes as an instrument for analysis a still 
vague concept given as defined: the collective consciousness. The Weberian trend 
satisfies neither the scientist nor the philosopher: the former will refuse the status 
of science for a sociology that mistakes the task of the scientist - the construction 
of theoretical models - with that of the philosopher - the interpretation of meanings; 
the second will claim guarantees that neither the Weberians nor the phenomenolo­
gists are in a position to give: how in fact can they affirm that eidetic connections 
are not especially in this field, the products of contingencies? 

If, therefore, the internal uncertainties of the sociology of knowledge itself must 
be overcome before attempting to exploit it in the history and philosophy of science, 
it is indispensable to start by reconstructing the history of the scientific activity 
one wants to explain. This history was often deficient and particularly in the domain 
of Arabic science. However, only at this price will sociological discourse cease to 
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oscillate between programmatic affirmations without scope of realisation and general 
statements devoid of any explanatory value. 

4. This fact has not been sufficiently stressed and distinguished from another tendency 
that sought to improve and extend the application of algebra to arithmetic. In fact, 
both tendencies coexisted in Arab mathematicians. As for the arithmetization of 
algebra, it arose in particular with al-KarajI and after him. In his introduction to 
al-KarajI's al-Fakhrf, Woepcke (1853, p. 7) remarked: "The Author frequently 
observed that we should be prepared for the intelligence of the rules of algebraic 
calculus - lfisab al-Majhulat - by the rules of common arithmetic - lfisab 
al-Ma'lumat". However, this remark is only a very superficial expression of 
al-KarajI's task. This book concerns a systematic and deliberate introduction of arith­
metical operations to algebra, so that the following operations x, +, +, -, exist not 
only for numbers but also for algebraic structures as well. This application of arith­
metic is revealed by algebraists - e.g. al-KarajI - as a necessary means for organizing 
and extending the algebraic exposition. The specificity of algebraic demonstration 
is then discovered. 

For instance, after examining the powers of the unknown by examining 
simultaneously x, r, xl, ... and lIx, lIr, llx3, ••• al-KarajI went on to introduce 
from the start arithmetical operations for rational algebraic expressions. See Woepcke, 
1853, ch. 3-8. 

5. The idea of canon was one of the central ideas of al-KhwarizmI's work. It system­
atically follows the solution of each type of equation in approximately the same terms. 
It should be remarked here that for lack of symbolism, a brief and limited vocabu­
lary expresses the idea of canon by the repetition of almost identical terms. 

6. Al-KhwarizmI's demonstration is geometric. For the above equation x2 + lOx = 39, 
he takes two perpendicular segments AB = AC = x. He then takes CD = BE = 5 = 
(10/2). The sum of the surfaces ABMC, BENM and DCMP is equal to 39, that of 
the square AEOD is 25 + 39 = 64 therefore x + 5 = 8 = ..[64, hence x = 3. 

p 
D~----------~--~O 

Ct------------+---I N 
M 

A L.... ___________ -' __ -' E 
B 

7. Woepcke (1951), p. 9. In Woepcke's translation, we replaced "ne rend pas superflu" 
("is not made superfluous") by "ne remplace pas" ("does not replace") which is a 
more rigourous translation of al-Khayyarn's sentence. 

8. For al-Samaw'al's al-Bahir, we consulted MS 2718 Aya Sofia, 113 fO, see fO 27v. 
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9. This text was translated into Russian by Ahmadov and Rosenfeld (1963, pp. 431-444). 
10. Luckey, 1951, pp. 24ff. and Luckey, 1948, pp. 217-274. 

Luckey's basic thesis is that al-KlishI at least rediscovered the table of binomial 
coefficients by using the procedure later known as the Ruffini-Horner procedure. The 
idea deserves detailed discussion carried out elsewhere (cf. above). 

11. Cf. al-RlizI (ed., n.d., p. 99): "The relationship of al-Shafj'I to the science of u$ul 
al-Fiqh - canonical jurisprudence - is the same one which links Aristotle with logic 
and aI-KhalIl ibn AJ:!mad with metrics. Before Aristotle, men used to discuss and 
confront each other following their natural inclination for lack of a universal law 
for organizing definitions and proofs. It goes without saying that their thoughts 
were confused and vague because nature alone without reference to universal law can 
do no better. Having noted that, Aristotle retired for some time and then presented 
his science of logic whereby he proposed to mankind a universal law to which to 
refer for the knowledge of definitions and concepts. In the same way, before ai-KhalIl 
ibn AJ:!mad, poets used to compose poems based on nature alone, while ai-KhalIl 
presented his science of metrics which consisted of a universal law of the merits 
and defects of poetry. And in the same way again, before Imam al-Shafi'I, men 
used to deal with questions relating to u~ul al-Fiqh, argue and confront each other 
without however possessing a universal law to which to refer for a knowledge of 
judicial proofs, the mode of controversy and demonstration. AI-Shiifi'I deduced 
from the u$ul al-Fiqh and proposed to mankind a universal law to which to refer 
for the knowledge of degrees of judicial proof". Classical Arabic tradition differ­
entiated on the whole between two classes of science: ancient sciences - 'ulUm 
al-awaJil - and Arabic sciences - 'ulUm al-'arab, i.e. linguistic sciences where the 
authors recognized no priority to Hellenic science. 

12. Cf. by way of example in the "great theologico-philosophical encyclopaedia", al­
Jabbar (ed., 1961, t.l), on the creation of divine speech. 

In works by MU'tazilites as in those of linguists, theoretical discussions devel­
oped at length the question of the origin and nature of language Cf. e.g. the work 
by the linguist al-SuyiitI (ed., n.d.), t.1, pp. 7ff. 

13. On the history of lexicography and to locate the importance of lexicographic study, 
see Keith (1924); Muller (1913, II); Coli ant (1932); Krumbacher (1896). 

14. In the beginning of Kitab al-'Ayn (ed., 1967, p. 52) we read: "This is what al­
KhalIl ibn AJ:!mad al-Ba~rI composed ... the consonants alif, bll J , ta', tha' ... by 
which Arabs speak, the pivot of their words and expressions, so that none are omitted. 
In this way he wanted to understand Arabic poetry and speech so that nothing would 
be irregular for him". 

15. This theory presented in the text attributed to ai-KhalIl, was taken up and devel­
oped later by Abii 'AlI ibn Faris, Ibn JinnI and al-SuyiitI ... The latter also related 
in his work cited above the opinions of Ibn Faris and Ibn JinnI. See ai-KhalIl (ed., 
1967, pp. 240ff.). 

16. AI-KhalIl (1967, p. 55) wrote: "In Arabic no construction of noun or verb is composed 
of more than five consonants. For any adjunctions exceeding five consonants to be 
found in a noun or verb, know that they are adjunctions to a construction which 
does not belong to the root of the word". 

17. "Know that a two-letter word permutes in two ways, like qd, dq, shd, dsh, a three-



274 CHAPTER IV 

letter word permutes in six ways, like cjrb, cjbr, brri, bcjr, rrib, rbri, and is called 
sextuple, a four-letter word permutes in twenty-four ways since its consonants which 
number is four are multiplied by the modes of the normal three-letter word which 
are six and therefore give twenty-four where we write down those language used 
whereas we eliminate those it does not ... and a five-letter word permutes in one 
hundred and twenty ways, since its consonants which number is five are multiplied 
by the modes of the four-letter word which are 24 and this gives one hundred and 
twenty ways where the smallest part is retained and the largest is not". 

In other words, to seek the number of permutations of r consonants, we find 
the number of r - I consonants multiplied by r, ou r! = r(r - I) I 

18. The calculation attributed by Abu I:Iamza to ai-Khalil and reported by al-SuyutI 
(ed., n.d., p. 74) is correct, that is A~ for n = 28, r = 2, ... , 5. As well as this 
calculation, the composition of the lexicon itself makes it possible to propose the 
corresponding formula. The method was often cited and much later is still to be found 
in Ibn Khaldun's Prolegomena, taken as an element of cultural background. To 
find c;, for r = 2 for example, he proceeded empirically, taking the first consonant 
which he combined with the others and thus obtained 27 words. He then took the 
second consonant which he combined with 26 to give 26 words, and so on. He 
added the combinations and multiplied the sum by two to give the arrays. For 
r = 3, he proceeded in the same way, but considered two consonant words as one 
consonant which he combined with the remaining 26 consonants. With 27 roots 
composed of 2 consonants he formed 26 three-consonant roots, and so on. He added 
them and multiplied by 6 to form the arrays, and so on for r = 4 and r = 5. 

19. See ai-Khalil (ed., 1967, p. 63) for the consonant c. 

AI-KhalIl (ed., 1967, p. 68) writes: "The C is not combined with the Q as one 
word because of the proximity of the point of articulation". 

Again, "But the C is negligible with the following consonants: j, h, Q, kh" (ed., 
1967, p. 69). 

However, it remains that after ai-KhalIl these problems were to be the subject 
of systematic investigations. 



4. AMICABLE NUMBERS, ALIQUOT PARTS AND 

FIGURATE NUMBERS IN THE THIRTEENTH AND 

FOURTEENTH CENTURIES 

INTRODUCTION 

It is often difficult to comprehend the genesis of concepts and techniques 
in number theory in the sixteenth and seventeenth centuries and, as a 
result, follow their filiation. Not infrequently, however, when one sets 
out to write the history of this theory, instead of being recognized and 
assessed, the difficulty is evaded by making one big jump over the 
centuries. So, nothing prevents placing Bachet de Meziriac or Fermat 
immediately after Euclid and Diophantus. Such an viewpoint is doubly 
misleading: it not only truncates history, but distorts an appreciation of 
the novel significance of more than one arithmetician in the sixteenth and 
seventeenth centuries as well. How to determine real changes in style 
that may have occurred at this time, and identify their manifestation in 
a rigorous way, if Bachet and Fermat simply follow Euclid and 
Diophantus? Under these circumstances, how to avoid a global judge­
ment of classical arithmetic, which expresses more often than not an 
inability to discern differences? 

Since the nineteenth century, nevertheless, one figure - Leonardo of 
Pisa, alias Fibonacci - has consistently disturbed this picture. His work, 
including significant results and methods in number theory, was known 
to many mathematicians who, like Luca Pacioli,l transmitted and 
developed his work. No one is unaware, however, that Fibonacci was 
directly in touch with Arabic mathematics. Therefore greater knowl­
edge about its ·history would at least enable us to tackle the arduous 
question of the genesis of concepts and techniques, if not pose the more 
epistemological problem of the scientific style and the novel contribu­
tion of the seventeenth century. 

But, if we are to believe most historians the return to Arabic mathe­
matics is not in the least compUlsory. In fact, well-informed specialists, 
whose sincerity is unquestioned, are unanimous in insisting that in 
number theory, unlike algebra and trigonometry, for example, Arab 
mathematicians were outstanding, neither for the originality of their 
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discoveries, nor the significance of their results. In comparison with other 
mathematical disciplines, therefore, number theory apparently fails to 
come up to expectations: neither by its results nor even its mistakes 
can it lay claim to historical fame. So the history of number theory can 
be written at the expense of the contribution of Arab mathematicians. 
In contradiction with these theses, however, two facts emerge from 
Woepcke's work in the nineteenth century which should have put his­
torians on their guard: the first occurrence of Fermat's theorem, and 
Thabit b. Qurra's theorem on amicable numbers.2 

Over the past few years we have pointed out the inaccuracy of this 
view of the history of number theory, at least in one important area: 
Diophantine integer analysis. This area arose in the tenth century and 
was established through algebra developed since al-Khwarizml and also 
against it, and based on a Euclidean, not a Diophantine interpretation 
of Diophantus' A rithmetica , recently translated by Qusta b. LUqa. We 
set forth below (infra, pp. 205-237 and pp. 238-261) the contributions 
of al-Khujandl, al-Khazin, Ibn al-Haytham among many others, towards 
the elaboration of Diophantine integer analysis in the tenth century. 

Here we shall pursue our investigations once again in another area 
of number theory, an area closely related to the tradition of Euclid's 
Elements: the study of aliquot parts required by the study of perfect 
and amicable numbers in particular. Significant for the history of the 
elementary theory of numbers, this study is apparently exemplary on two 
counts. Firstly, the history of aliquot parts, and notably amicable 
numbers, 3 has been written many times over in terms considered 
definitive. Secondly, according to its history, it apparently evolved 
independently of other mathematical disciplines, and as a result, lacked 
real significance for number theory as a whole. Based on a series of 
unedited documents, some hitherto unknown, we shall demonstrate that 
this was not the case. Furthermore, we shall show that the application 
of algebraic concepts and means to the traditional, Euclidean, domain 
of number theory by thirteenth-century mathematicians (at the latest) 
achieved results attributed until now to seventeenth century mathemati­
cians: for instance, the study of two elementary arithmetical functions, 
figurate numbers, combinatorial analysis, and amicable numbers them­
selves. Let us start by examining their history. 
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1. THABIT B. QURRA'S THEOREM AND THE CALCULATION OF 

AMICABLE NUMBERS 

1.1. It all really started with Thabit b. Qurra. Before his work, amicable 
numbers, unlike perfect numbers, lacked the comprehensive theory they 
deserved. We know that the "perfect number" in the Euclidean sense was 
the subject of a theory that appears at the end of Book IX of the 
Elements.4 The famous proposition IX-36 on perfect numbers was pre­
sented in a purely speculative, a priori way; furthermore, we might ask 
ourselves why the Greeks paid particular attention to such questions. 
Among all the various hypotheses on the subject, the most attractive is 
that of Friedrich Hultsch in the late nineteenth century: it shows that it 
was in fact a theoretical translation of logistic procedures known since 
the Egyptians.5 But the situation is entirely different for amicable 
numbers. They were only mentioned in later evidence in reference to 
mystical or esthetic traditions. lamblichus of Chalcis (1894, p. 35), the 
most renowned author for such evidence, like Thabit b. Qurra later on, 
ascribed a knowledge of these numbers to the Pythagoreans. Though they 
are of course legendary accounts, they have the advantage, in the case 
of Ibn Qurra at least, of revealing his scientific intentions. For instance, 
in the preamble to his tract on amicable numbers, Thabit ibn Qurra recalls 
that "Pythagoras and the ancient philosophers of his school" used two 
species of numbers: perfect and amicable numbers. Nicomachus of 
Gerasa, Ibn Qurra continues, gave the rule for determining perfect 
numbers though without proof. On the other hand, Euclid gave both 
the rule and its proof. As for amicable numbers, Ibn Qurra observes 
that "neither of these authors either mentioned or showed any interest 
in them".6 

The dissymmetry between perfect and amicable numbers, the dis­
proportion between the mystical importance of amicable numbers and 
mathematical knowledge about them are so many historical facts on 
the eve of Ibn Qurra's proof. If we confine ourselves to mathematical 
knowledge alone, it is in fact limited to a definition and the calculation 
of the couple [220, 284]. So Ibn Qurra draws up a new programme whose 
accomplishment he outlines in these terms: "Since the matter of them 
(the amicable numbers) has occurred to my mind, and since I have 
derived a proof for them, I did not wish to write it (i.e. the rule) without 
proving it perfectly, because they has been mentioned in this way (i.e. 
they have been neglected by Euclid and Nicomachus). I shall therefore 
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prove it with complete clarity after introducing the necessary lemmas".? 
And, in fact, after establishing the necessary lemmas, he proved the 
theorem that bears his name. 

Before presenting the theorem, let us recall some definitions: the 
aliquot parts of a natural integer n or its proper divisors, are its divisors 
excluding n. Call <J(n) their sum, and <J(n) = <Jo(n) + n, the sum of 
divisors. Integer n is called 

abundant if <Jo(n) > n, 
deficient if <Jo(n) < n, 
perfect if <Jo(n) = n. 

Two natural integers m, n are called amicable8 if 

<Jo(m) = n <Jo(n) = m. 

In the tenth century9 the notion of equivalent integers m, n, ... , r 
(mutaCadila) was also introduced, 

<Jo(m) = <Jo(n) = ... = <Jo(r); 

and that of the sub-double,1O though unnamed. 

<Jo(n) = 2n. 

IBN QURRA'S THEOREM. For n > 1, let Pn = 3.2n - 1, qn = 9.22n-l 
- 1; if Pn-l' Pn' qn are prime, then a = 2npn_lPn and b = 2nqn are amicable, 
a is abundant and b is deficient. 11 

To establish the theorem, Ibn Qurra proves nine lemmas divided into 
two groups. The first three lemmas deal with the determination of the 
aliquot parts of an natural integer. Here Ibn Qurra touches on two themes 
which were to be systematically developed by his successors. He then 
turns to the decomposition of an integer into prime factors and con­
siders procedures for combinatorial analysis avant la lettre. He thus 
proves in succession: 

- "Any plane number whose two sides are prime is measured by no 
number other than itself"Y The lemma is clearly a particular case of 
proposition IX-14 of the Elements (voir infra, p. 289). 

- "Any plane number, one of whose sides is prime and the other a 
composite number, is measured by its two sides and by any number which 
measures its composite side, and by any product of its first side by one 
of the numbers that measures its composite side, and is measured by 
no other number".l3 
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- "Any plane number whose two sides are composite, is measured by 
its two sides, by any number which measures each of its sides, by any 
product of each of these two sides by the number which measures the 
other, and by any product of any number which measures one of the 
two sides by any number which measures the other; and is measured 
by no number other than these". 14 

Ibn Qurra proceeds in the same way to prove the three lemmas; he 
starts by establishing that each element of the set of proper divisors of 
a number divides this number; he then shows by reductio ad absurdum 
that there exists no other element that divides this number not a member 
of this set. Moreover, the three lemmas correspond to the same 
situation, made more complicated each time. We see therefore that after 
completion of the first attempt to elaborate a theory of amicable numbers, 
Ibn Qurra has already caught sight of the basic problems for the history 
of arithmetic: factorization into prime elements and resort to a possible 
combinatorial for enumerating these elements. 

The second group of lemmas deals more specifically with the for­
mation of perfect, abundant and deficient numbers. This was in fact a 
return to traditional research on the characteristic of the proper divisors 
of a number. Thiibit b. Qurra proves two propositions - the first of 
which is important for the history of perfect numbers. It is rewritten: 15 

n 

Let s = L 2\ P a prime odd number; then 

and 

k=O 

O"o(2ns) = 2ns 
O"o(2np) > 2np 
O"o(2np) < 2np 

if s a prime number. 
if p < s 
if p > s 

If the first proposition gives a procedure for generating perfect Euclidean 
numbers, abundant and deficient numbers, the second gives another for 
the last two cases. It is rewritten: 16 

Let PI' P2 > 2 be two distinct prime numbers, then 

O"O(2np1P2) > 2np1P2 if P1P2 < (2n+1 - 1)(1 + PI + P2) 

and 
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An examination of Ibn Qurra's tract reveals that the study of amicable 
numbers is not just a part of a wider ensemble that also includes the 
formation of abundant, deficient and perfect numbers but, furthermore, 
it requires closer investigation into the properties of proper divisors as 
well. Then the lines of this investigation still embedded in traditional 
arithmetic are implicitly drawn: factorization and combinatorial methods. 
If they came to dominate, it was due to a repeated call for the notion 
of prime number. More than before, it had become necessary to ensure 
whether given numbers were prime or not. This orientation, as we shall 
see with Ibn Qurra, will receive further confirmation with his successors; 
the notion ()f prime numbers must be assigned a much more central 
position than had been the case in the past. 

1.2. If we set aside the mystical aspect of amicable numbers in order 
to concentrate on their mathematical aspect alone, we are obliged to 
note that the history of these numbers merges with that of the knowl­
edge and transmission of Ibn Qurra's work. 17 The paucity of this already 
meagre history is greater if, for a wide variety of reasons, Ibn Qurra is 
required to step down. However, this is what some historians meant when 
they asserted that Ibn Qurra's theorem, buried in oblivion like the 
mathematician himself, was rediscovered complete and independently by 
Fermat and Descartes; moreover, not until Woepcke's translation in the 
nineteenth century would the theorem relinquish the names of Fermat 
and Descartes. Yet again, according to this viewpoint, the study initi­
ated by Ibn Qurra could not have been mathematically active, since, 
forgotten, it had not given rise to research. 

Such a position would be shattered by recent studies of certain works 
by Arabic-speaking mathematicians after Ibn Qurra: for example, al­
KashI's Key to Arithmetic (d. 143617), and quite recently, the opuscula 
by Ibn al-BanniP)'s commentator (probably 14th c. as we shall see). Both 
works attest in fact that Ibn Qurra's theorem was known to mathemati­
cians in the fourteenth and fifteenth centuries. But if we succeed in 
showing that neither al-KashI nor the fourteenth century commentator 
are isolated cases, that since its formulation this theorem was transmitted 
without interruption, and lastly that since its diffusion was not confined 
to mathematicians alone, but also won over philosophers, the opinion 
which affirms the eclipse of Ibn Qurra's theorem must collapse. While 
not pretending to be exhaustive, a fanciful claim in view of the present 
state of research in Arabic mathematics, it is sufficient to select a few 
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significant landmarks, and stress the importance of this research on 
aliquot parts in each case. 

In the second half of the tenth century, Abu al-~aqr al-Qabi~i18 in a 
small treatise on arithmetic, examines perfect numbers, recalls the rule 
for the formation of Euclidean perfect numbers, then examines amicable 
numbers about which he cited Ibn Qurra's theorem.19 Some decades later, 
two other studies much more significant than that of al-Qabi~i are to 
be found. The first is by al-Karaji, the famous tenth century algebraist, 
and appeared in his work on arithmetic, al-Badfc (l!isiib) , the second 
is by the arithmetician Abu Tahir aI-Baghdadi (d. 1037). The first study 
is the most useful among known texts for identifying the state of research 
on this subject a century or so after Ibn Qurra. Before examination and 
by its very presence in al-BadZC, we know that the theory of amicable 
numbers not only attracted mathematicians of the calibre of al-Karaji, 
but was also considered worthy enough to appear in a work for experi­
enced mathematicians. Moreover, it was for them that al-Karaji on his 
own admission,20 wrote al-Badfc which included a chapter on the theory 
of amicable numbers. This chapter consists essentially of Ibn Qurra's two 
preceding propositions and his theorem; however, al-Karaji proposes 
to prove these propositions again in a really general way or, in his own 
terms, to give "a universal proof" (al-Karaji, ed., 1964, p. 28), while 
his predecessors only gave a quasi-general proof, i.e. immediately gen­
eralized once n = 2, 3, 4, 5 etc. is established. Any requirement for the 
representation of numbers by segments, even if aimed at helping the 
imagination, is excluded from the proof. So, even if for simple tech­
nical reasons21 his attempt was a failure, nonetheless al-Karaji's work 
ensured the circulation of Ibn Qurra's theorem. As for aI-Baghdadi, he 
apparently synthesized contemporary research on aliquot parts in his 
important treatise on arithmetic al-Takmila. 22 His exposition is arranged 
according to the following plan: he starts by repeating the definitions 
of the various species of numbers, notably abundant and deficient 
numbers including perfect numbers with some of their properties; he then 
introduces equivalent numbers, and lastly, concludes with amicable 
numbers. This still unpublished treatise is proof that contemporary 
mathematicians were acquainted with several propositions unanimously 
attributed to later mathematicians. For instance, aI-Baghdadi states a 
result commonly attributed to Bachet de Meziriac: the smallest odd 
abundant number is 945. 23 On the other hand, in his study of perfect 
numbers, he disputes the validity of an affirmation which already figured 
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in Nicomachus of Gerasa, and was reiterated in the sixteenth century. 
He writes as follows: "He who affirms that there is only one perfect 
number in each caqd (power of ten) is wrong; there is no perfect number 
between ten thousand and one hundred thousand. He who affirms that 
all perfect numbers start with the figure six or eight are right".24 Next 
he recalls the rule Euclid stated for forming perfect numbers before 
proposing another equivalent rule which he claims as his own 
discovery. This rule is rewritten: 

if O'oC2n) = 2n - 1 is prime 
then 1 + 2 + ... + (2n - 1) is a perfect number 

or, in his own words: "We discovered another method (other than that 
of Euclid) for the formation of perfect numbers: if (the sum) of the aliquot 
parts of an evenways even number is prime, then the sum of integers 
starting with the unit, is a perfect number". 25 So instead of resorting to 
geometrical progressions, arithmetic progressions suffice to form 
Euclidean perfect numbers. Besides this result, commonly attributed to 
the seventeenth-century mathematician Jan Brozek (Dickson, 1966, pp. 
13-14), aI-BaghdadI states other less important ones,26 and completes 
his exposition with amicable numbers to which he applied a slight 
variation of Ibn Qurra's theorem. Moreover, this theorem was at that time 
apparently part of basic arithmetical knowledge, since it is to be found 
in the work of an author who died the same year as aI-BaghdadI: 
the arithmetical book of Avicenna's famous philosophical synthesis, 
al-ShifiP.27 

Most of the above results are to be found in treatises devoted to 
teaching two centuries later. In an early thirteenth-century treatise, al­
ZanjanI (still alive in 1257) took up aI-BaghdadI's results in almost 
identical terms; he touched on the problem of sub-double numbers, and, 
once again, gave Ibn Qurra's theorem on amicable numbers.28 Yet the 
most significant attempt to give a new proof of this theorem was achieved 
in the late thirteenth-early fourteenth century by Kamal aI-DIn FarisI 
(d. 1320), to whom we shall return at length later. Other mathemati­
cians may be added: al-TanukhI29 in the thirteenth century, Ibn al-Banna)s 
fourteenth-century commentator,3D as well as al-UmawI. 31 From the 
fifteenth century onwards, al-KashI,32 Sharaf aI-DIn al-YazdI,33 and 
Mul}ammad Baqir al-YazdI34 may be cited. Many other names could 
be added to the above, but their diversity in space and time are suffi­
cient proof of the uninterrupted circulation and continuous transmission 
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of this theorem. Did this tradition - and this is the question here - remain 
unknown to European mathematicians? Though highly unlikely, such 
an eventuality nevertheless remains probable until clear documentary 
proof is discovered. On the other hand, if we consider that the author 
in question was already known in Europe for several of his works on 
astronomy and statics, the probability is even less. 

Independently of this tradition or not, Fermat and Descartes stated 
the same theorem in turn between 1636 and 1638. Here, as for Arab 
mathematicians, research on amicable numbers is set in the configura­
tion of perfect numbers, which includes sub-multiple numbers and, more 
generally, aliquot parts. Consequently, it is important to know the advance 
of seventeenth-century mathematicians in this field over their Arab 
predecessors in order to give a correct assessment of the role of these 
investigations for the history of number theory from Fermat onwards. 
As we know, Fermat's early works were devoted primarily to a study 
of sub-double numbers, the number of aliquot parts of a positive integer 
and amicable numbers, a conclusion drawn from a systematic exami­
nation of his correspondence between 1636 and August 1638, and some 
passages in Mersenne bearing the stamp of Fermat. In his general preface 
to Harmonie Universelle (1636), Mersenne gives the famous couple of 
amicable numbers named after Fermat. In the second part of the same 
work (1637), in a passage just as famous, Mersenne sets out Ibn Qurra's 
theorem, probably based on Fermat. Fermat (1894, t. II, p. 20) wrote 
to Mersenne on 24 June 1636: "Some time ago now, I sent the propo­
sition on aliquot parts to Mr de Beaugrand with a construction for finding 
infinite numbers of the same nature. If he has not lost it, he will let 
you know about it". On 22 September, in the same year, he wrote to 
Roberval (1894, t. II, p. 72): "this is also how I found infinite numbers 
that make the same thing as 220 and 284, that is the parts of the first 
equals the second, and those of the second the first". 

On 31 March 1638 in a letter adressed to Mersenne (ed., 1962, 
t. VII, p. 131), Descartes gives, in turn, the same theorem with this 
comment: "I do not need to add its demonstration, as I am saving time 
and, concerning problems, it is sufficient to give thefacit since those who 
proposed it can examine whether or not it was solved correctly". 
Moreover, Fermat and Descartes were apparently just as convinced as 
their Arab predecessors that Ibn Qurra's theorem gives an infinity of 
solutions, or as Descartes wrote, this rule "contains an infinity of 
solutions".35 However, during this period as we said, the works of 
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Descartes and Fermat on arithmetic focused on sub-double numbers, 
the numbers of aliquot parts and amicable numbers. If we set aside the 
study of aliquot parts for the time being in order to concentrate on 
amicable numbers, we note that both mathematicians simply rediscov­
ered Ibn Qurra's theorem without proving it. And yet for some historians 
the seventeenth-century contributions are seen as a reactivation of number 
theory; and it is true the study of two prime elementary arithmetic 
functions are seen to take shape. On the other hand, the methods 
employed by Descartes and Fermat in their works are algebraic rather 
than strictly arithmetical. If we reconsider the advance of these mathe­
maticians over their Arab predecessors, our question becomes more 
precise: when and why did this reactivation occur? More exactly, when 
and why were algebraic methods applied to Euclidean number theory? 
Before reconsidering this question, let us start by examining how Thabit 
b. Qurra's theorem was applied to the calculation of couples of amicable 
numbers. 

1.3. One would have expected Ibn Qurra's theorem to have encour­
aged mathematicians to multiply calculations of amicable numbers, all 
the more so because the latter were invested with social and psychological 
virtues. Yet this was not the case. In fact, only three couples are known 
before Euler. The first couple (220, 284) is of uncertain origin, though 
mentioned earlier by Iamblichus (1894), who attributed it to Pythagoras; 
Thabit b. Qurra was not tempted to pursue his calculations further. The 
two other couples (17296, 18416) and (9363584, 9437056) are named 
after Fermat and Descartes respectively, to whom the first calculation 
is usually attributed. But it has recently been shown that Fermat's couple 
had been calculated by Ibn BannaJ's commentator (Souissi, 1976, p. 202) 
in the late fourteenth century. Here we want to show that it had already 
been calculated at least a century earlier, before 1320, and it was 
subsequently known to many mathematicians; as for Descartes' couple, 
it was known well before the works of the philosopher, as we shall see. 
But beyond the question of historical priority lies a much more impor­
tant one, that of the techniques on which it was based. So we shall 
concentrate on the means implemented for the calculation of amicable 
numbers. 

In his tract, edited elsewhere (Rashed, 1982b), al-Farisl is not 
satisfied to give the calculation of "Fermat's couple" but states a complete 
justification for it as well. He starts with n = 4; then P3 = 23, P4 = 47, 
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q4 = 1151. Then using several propositions including Eratosthenes' sieve, 
he shows that 1151 is prime; the first two numbers are obviously prime. 
He applies the theorem and then obtained Fermat's couple. He goes on 
to write: 

Determine the sum of aliquot parts of the prime number (17296), itself a product of 16 
by 1081. The sum of aliquot parts of the first is therefore IS, and that of the second 71. 
Multiply the sum of aliquot parts of the first - which is 15 - by the second plus the 
sum of its aliquot parts, i.e. 1152, we have 17280. Then multiply the first - which is 16 
- by the sum of the aliquot parts of the second, i.e. 71, we obtain 1136, which added to 
what we have obtained gives 18416, the higher of two amicable numbers. 

He continues (Rashed, 1982b, proposition 27): 

We determine the aliquot parts of the second number (18416) in the same way by finding 
the aliquot parts of its two sides, which are 16 and 1151. The sum of the aliquot parts 
of the first (16) is 15 and that of the (parts) of second (1151) is one. Multiply the sum 
of the aliquot parts of the first by the second (plus the aliquot parts of the second) -
(the sum) of the aliquot parts of its two sides (of 18416), one of them is the unit, whose 
unit is one, being known - that is, 1152, we obtain 17280. Then multiply the first, that 
is 16, by the sum of the aliquot parts of the second, we have 16, which we add to the 
first (result), which gives 17 296. 

Therefore, to prove that Fermat's couple is really a couple of amicable 
numbers, al-FarisI, as we saw, proceeds as follows 

0'0(17296) = 0'0(24.23.47) = 0'0(24)0'(23·47) + 240'0(23.47) 
= 15(71 + 1081) + 16·71 = 18416. 

On the other hand, 

0'0(18416) = 0'0(24 .1151) = 0'0(24)0'(1151) + 160'0(1151) 
= 15·1152 + 16 = 17296. 

AI-FarisI therefore proceeds with the aid of the properties - estab­
lished beforehand - of the sum function of the aliquot parts of a number. 
This is a rapid survey of the ground covered since Ibn Qurra's method. 
Moreover, the calculation of the same couple was apparently known to 
mathematicians as on at least two occasions it is to be found in texts 
clearly devoted to teaching. The first text was composed by Ibn al­
BannaJs commentator (Souissi, 1976) mentioned earlier; the second, 
recently discovered, by al-TanukhI.36 In both cases we have an example 
of a direct application of Ibn Qurra's theorem without verification with 
the aid of the sum function. Whatever the case, the existence of this 
calculation in texts less advanced mathematically than al-FarisI's tract, 
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enables us to affirm without risk that this couple was part of received 
mathematical knowledge in the fourteenth century. 

The situation is different for the calculation of Descartes' couple. 
The early seventeenth-century mathematician ai-YazdI had in fact claimed 
this result for himself. In his Treatise on Arithmetic, widely circulated 
as the number of surviving manuscripts bear witness,37 after stating a 
theorem equivalent to that of Ibn Qurra, he examines the case n = 7; 
P6 = 191, P7 = 383, q7 = 73727, and obtains Descartes' couple. In his own 
words: 

Example: we found that 192 and 384 of this sequence «6.2k)k>1) are suitable for that. If 
we subtract the unit from each of them, the remainder is 191 and 383, two numbers 
whose product is 73153: the third odd number. The sum of these three odd numbers is 
73727 which is an odd prime number. The third of the highest is 128 which, multiplied 
by the third odd number (PflJ7) , gives the smallest of two amicable numbers, that is, 
9363584. We then multiply by the sum of two odd numbers which is 574, which gives 
73472; which we add to the first number obtained, which gives 9437056, the higher of 
the twO.38 

AI-YazdI then gives Table 1 (see below) which recapitulates the 
calculation of aliquot parts. 

TABLE I 

Aliquot parts of the highest Aliquot parts of the smallest 

sum of odd numbers unit third second first unit 
odd number odd number odd number 

[P6 + P7 + P6P7 = q71 [2"] [P6'P7] [P7] [P6] [2"] 

73727 73153 383 191 
147454 2 146306 766 382 2 
294908 4 292612 1532 764 4 
589816 8 585224 3064 1528 8 

1179632 16 1170448 6128 3056 16 
2359264 32 2340896 12256 6112 32 
4718528 64 4681792 24512 12224 64 
9437056 128 9363584 49024 24448 128 

As may be seen, far from being forgotten, Ibn Qurra's theorem was 
still alive at the end of the fifteenth century; moreover, pairs of amicable 
numbers commonly attributed to seventeenth-century mathematicians had 
been known for a long time. Still more generally, several results relating 
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to these numbers, perfect numbers including the study of aliquot parts, 
whose discovery was ascribed to later mathematicians, had already been 
proved by their Arab predecessors. Whatever the significance of these 
results, the essential, as we said, lies elsewhere: the study of elemen­
tary arithmetical functions in the thirteenth century, and the much earlier 
introduction to algebraic methods in number theory. The intervention 
of algebraic methods had been remarked on, moreover, by later Arab 
mathematicians, one of whom recalls, in an outline of the history of 
amicable numbers, that there were several methods for determining them: 
"the one mentioned by Thabit ibn Qurra of ijarran, which is the geo­
metrical method which he proved; the one mentioned by Abu al­
WarnJ Mul).ammad b. Mul).ammad al-BuzjanI; the one mentioned by 
Abu al-ijasan CAlI b. Yunis al-Mi~rI; and lastly, the one of algebra and 
al-Muqiibala".39 Though we have not succeeded in discovering the 
manuscripts of the last two authors, al-FarisI's tract, however, gives us 
ample means to review the problem of the usage of algebraic proce­
dures in Euclidean number theory. 

2. AL-FARISi: A NEW STUDY ON ALIQUOT PARTS. 

THE FUNDAMENTAL THEOREM OF ARITHMETIC, ELEMENT AR Y 

ARITHMETICAL FUNCTIONS, FIGURATE NUMBERS 

2.1. Kamal aI-DIn al-FarisI's avowed purpose in his tract on amicable 
numbers40 could not be clearer: to prove Ibn Qurra's theorem afresh 
but in a different way. He intended to base the new proof on a system­
atic knowledge of the divisors of an integer and the operations that can 
be applied to them. Such a project must in fact have led him to a radical 
reorganization of this area of number theory; and al-FarisI's approach 
induced him not only to modify Euclidean arithmetic, locally at least, but 
also gave rise to new topics in number theory. To achieve such a study 
he was obliged to develop what Ibn Qurra had only hinted at in passing, 
in particular factorization and combinatorial methods; it was therefore 
necessary to ensure the existence and uniqueness of the factorization 
of an integer in order to introduce combinatorial methods and reach an 
exact knowledge of the number of divisors or proper divisors: conse­
quently, this implied engaging in a new study of elementary arithmetic 
functions. No wonder therefore that al-FarisI's tract opens with three 
propositions clearly intended to state and prove what will much later 
be called the fundamental theorem of arithmetic. 
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PROPOSITION 1. Any composite number is necessarily decomposed 
into a finite number of prime factors of which it is the product (Rashed, 
1982b, proposition 1). 

AI-FarisI's proof can be summarized as follows: let a > 1 be an integer; 
a has a prime divisor b according to VII-13 of the Elements. Then a is 
written 

a = bc, 

with c integer such that 1 ~ c < a. 
If c is prime, then the proposition is proved; otherwise c has a prime 

divisor d such that 

c = de, 

with 1 ~ e < c. 
If e is prime, it gives 

a = bde, 

and the proposition is proved; otherwise, the procedure is repeated, and 
after a finite number of times, a prime number k reached, such that 

a=bde ... k; 

otherwise, al-FarisI writes (Rashed, 1982b, proposition 1), "it would 
necessarily follow that the finite is composed of a product of an infinity 
of numbers, which is absurd". 

Consequently, after proving the existence of the resolution into a finite 
number of prime factors, aI-FarisI makes a clumsy attempt to prove its 
uniqueness. He first proves the following two propositions: 

PROPOSITION 2. Let a and b be two integers, each one decomposed 
into distinct prime factors, PI' P2 , ... , Pn' then a and b are identical 
(Rashed, 1982b, proposition 4). 

By identical - mutamathil - al-FarisI, like his contemporaries, implies 
that both numbers are considered as two magnitudes whose ratio is 
equal to the unit. Such a notion of identity apparently refers 
therefore to a ratio between two geometrical representations subjacent 
to two integers. This concept, directly related to Euclidean arithmetic 
where integers represent line segments, outlived al-FarisI since it will 
be found later in Euler. In any case, a and b are identical if a measures 
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b as often as b measures a. The primacy of the geometrical representa­
tion is of little help in formulating the proof of uniqueness for al-FarisL 
Next aI-Faris! justified the reciprocal of the above proposition without 
really proving it: 

PROPOSITION 3. Let a and b be two different (non-identical) integers, 
then their respective factorization into prime factors differs either by 
the number of factors or by the multiplicity of anyone of them (Rashed, 
1982b, proposition 5). 

The last two propositions were obviously intended to establish the unique­
ness of the factorization into prime factors. However, they were clearly 
insufficient to enable aI-Faris! to achieve his aim. He should have stated 
and proved the reciprocal of Proposition 3, and it is surprising he did 
not adopt this approach. It is also surprising he did not follow the 
approach indicated in proposition IX-14 of Euclid's Elements either, 
which he knew perfectly, and what is more, had already been used by 
Ibn Qurra in his tract on amicable numbers. 

So we have seen how aI-Faris! formulated the fundamental theorem 
of arithmetic and his attempt to prove it. Nevertheless, despite its defi­
ciencies, al-FarisI's contribution is still the first known version of the 
famous theorem. Whether he was the inventor or not is unimportant; 
on the other hand, what is capital is the intimate relation between a 
systematic study of the divisors of an integer - their sum and number 
- and the elaboration of this theorem which quite naturally appears to 
base this study. If this is the case, it is easily understood why the 
fundamental theorem of arithmetic was absent from Euclid's Elements, 
though all the necessary means for its formulation and proof existed. This 
is an important point for the history of mathematics, and the subject of 
much controversy. 

Among the great theorems, few indeed have such a meagre history 
as that of the fundamental theorem of arithmetic. In fact, apart from 
al-FarisI's theorem just introduced, its history amounts to no more than 
a passing reference in Gauss' Recherches arithmetiques (1807, theorem 
16). As to whether this theorem was known earlier the only answers 
are conflicting interpretations. The controversy originated in a com­
mentary by Heath41 on proposition IX-14 of the Elements, which reads: 
"If a number be the least that is measured by prime numbers, it will 
not be measured by any other prime number except those originally 
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measuring it". In other words, the smallest common multiple of prime 
numbers has no prime divisors other than these numbers. Heath thought 
he had recognized the famous fundamental theorem in this proposition. 
This interpretation by the eminent historian was not only disputed by 
his successors, but even before it was formulated so to speak, by his 
predecessors. We have just seen that neither al-FarisI, nor commenta­
tors on Euclid as distinguished as Ibn al-Haytham,42 nor mathematicians 
of the class of al-KarajI (ed., 1964, p. 22), recognized IX-14 as what 
would become the fundamental theorem; this shows that Heath's inter­
pretation was not really historical. It is understandable then that some 
historians, undaunted by a recurrent interpretation, had hesitated before 
adopting Heath's point of view. They were unanimous in recognizing that 
the famous theorem was completely absent in the Elements, though not 
unknown to Euclid; a position undistinguished by its clarity. For some, 
for example Jean ltard,43 this absence is ascribable to Euclid's peda­
gogic preoccupation in the Elements which dissuaded him from 
exhausting his subject. For others such as Bourbaki,44 Euclid did not 
formulate this theorem because he lacked an adequate terminology and 
notation for any powers. Still more recently,45 while not abandoning 
Heath's interpretation, an attempt was made to reduce its scope by 
affirming that IX-14 is equivalent to a particular case of the funda­
mental theorem: that of natural integers without square factors, i.e. if 
PI P2 ... Pn is a product of distinct prime numbers taken in pairs, then 
the only prime factors are PI' P2' ... , Pn. 

However IX-14 is interpreted, we can simply note the absence of 
any formulation or proof of the existence of the factorization of an integer 
into prime factors. At best therefore, IX-14 is still only a proof of the 
uniqueness of factorization, whose existence was merely postulated for 
the restrictive case described above. How not to be surprised then, by 
an approach which aims at proving uniqueness without proving existence, 
when all the necessary means for this proof exist? In fact, proposition 
VII-31 had been used to that purpose by Euclid's successors. Since it 
is inconceivable here to invoke circumstantial reasons to justify this 
absence, it is more advisable to yield to facts and admit, like some 
historians (Hardy and Wright, 1965; Bourbaki, 1960, I; Itard, 1961; 
Knorr, 1976), that in the Elements Euclid did not deal with the question 
of the factorization into prime factors, or at least it did not appear 
fundamental enough to him to devote a theory to it. If this hypothesis 
is correct, then the above debate briefly mentioned in these pages would 
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appear historically superfluous. Heath thought he perceived a theorem 
where there was none; his detractors raised a controversy which should 
never have taken place, and a project was attributed to Euclid which 
was not his, only to be accused of faulty execution. 

A study of Euclid's Arithmetical Books which deliberately brushes 
aside problems raised both by their genealogy and their destiny, i.e. 
their application to Book X, shows that their overall connection rules 
out any fundamental role for a theorem on decomposition. We first 
encounter Euclid's algorithm - sometimes called ixv"h)(pa{pE(:n~, - as 
it was based on two propositions in Book VII. But, given the Euclidean 
concept of the unit (as a measurement of any number), and the number 
(as a finite plurality of units), the algorithm therefore establishes the 
existence of the highest common divisor. The importance of the notion 
of co-prime numbers followed by absolute prime numbers, whose exis­
tence and infinity are established in Book IX, is immediately apparent. 

Nothing in the evolution of Euclid's exposition compels us to look 
for a theorem that is not fundamental, at least for the organization of 
Book IX, and will not provide the basis for other essential applications. 
This is precisely the case of the fundamental theorem of arithmetic. 

If we confront this context of the Elements with that of the search 
for all the divisors of a natural integer for examining their sum and 
number, we will have a better grasp of the reasons that led a mathe­
matician such as al-FarisI to conceive this theorem. Indeed, if the theorem 
was formulated, it was with a view to prepare this study of divisors 
and introduce the necessary combinatorial methods for it, while all the 
required conditions for its proof had been consigned in the Elements long 
before. Destined therefore to making algebraic procedures applicable 
to Euclidean arithmetic, this theorem emerged naturally, and neither 
al-FarisI nor his successors grasped either its fundamental role or its 
central place. To be truly identified as such, it was necessary to wait until 
it was established that it was not as "natural" as it appeared, in other 
words, it is not verified in the arithmetic of any ring of integers. But 
that is another topic. 

2.2. With the above theorem and combinatorial procedures it is now 
possible to study two elementary arithmetical functions, though effec­
tive means for resolving into prime factors are still wanting. Since 
aI-BaghdadI at least, mathematians use several lemmas to facilitate the 
use of Eratosthenes' sieve. The following is the most important: 
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LEMMA 4. If a natural integer n has no prime divisor p such that 
p2 < n, then n is prime. 

A lemma incorrectly attributed to Fibonacci.46 

The study of arithmetical functions proper starts with Propositions 5 
and 6, which are a good illustration of the general style of al-FarisI's 
study as a whole. 

PROPOSITION 5. Ifwe resolve a composite number into prime factors, 
then any number composed of two, or three of these factors and so on 
to any number composed of all its factors minus one, is an aliquot part 
of the given number (Rashed, 1982b. proposition 6). 

PROPOSITION 6. Any number resolved into prime factors only has 
as its aliquot parts, the unit, its prime factors, the numbers composed 
of its factors, two by two, if their number is greater than two, three by 
three if their number is greater than three and so on until we reach the 
number composed of all the factors minus one (Rashed, 1982b, propo­
sition 9). 

At the outset the problem was studied in a deliberately combinatorial 
style. Then followed two groups of propositions in succession. The first 
deals with the sum function of aliquot parts; as we have seen, Ibn Qurra 
and aI-BaghdadI had obtained some partial results, but at no time had the 
arithmetical function been studied for itself; it is in al-FarisI's tract that 
research wholly devoted to the topic appears for the first time. We shall 
give the most important propositions he stated and proved there. 

PROPOSITION 7. If n = PI P2 with P2 prime and (PI' P2) = 1, then 

<Jo(n) = P2<JO(PI) + <J(PI)' 

or, in his own words: "If we multiply a composite number by a prime 
number different from the prime factors of the composite number, then 
the sum of the aliquot parts of the product is equal to the product of 
the sum of the aliquot parts of the composite number by this prime 
number, plus the sum of the aliquot parts of the composite number, 
plus the composite number" (Rashed, 1982b. proposition 18). 

AI-FarisI's proof can be summarized as follows. Note ~o(n) the set 
of aliquot parts of an integer n, j the set of elements of the second 
side of the preceding relation. AI-FarisI first shows that any element 
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of j is a proper divisor of n, and therefore an element of 2llo(n), whence 
j C 2llo(n). He then proves by reductio ad absurdum that 2llo(n) contains 
no other element not belonging to j; whence the result. In fact, the 
idea subtending Proposition 7 is, as we shall see, 

a(n) = a(PIP2) = a(PI)a(P2) = a(PI)(1 + P2)' 

hence 

ao(n) = a(PI)(1 + P2) - PIP2' 

hence the result. 

COROLLARY 8. If n = pr, P prime, then 

r-l pr 1 
ao(n) = L pk = --- ; 

k=O P - 1 

this corollary had already been applied by al-BaghdadT, for example 
(Rashed, 1982b, proposition 27). 

Next al-fa.risT considers a slightly more complicated situation, touched 
on by Ibn Qurra, and shows (Rashed, 1982b, proposition 21): 

PROPOSITION 9. If n = PIPZ' with (PI' P2) = 1, then 

ao(n) = P l aoCP2) + P2aO(PI) + aO(PI)aO(P2); 

which is proof that he knows the expression 

a(PIP2) = a(PI)a(pz), 

and knows that the a function is multiplicative. Let us read the state­
ment of this proposition, where al-HirisT uses a similar proof to that of 
the above proposition. He writes (Rashed, 1982b, proposition 21): 

If we multiply a composite number by a composite number, the sum of the aliquot parts 
of the product is equal to the product of the sum of the aliquot parts of the multiplier 
by the multiplicand, plus the product of the sum of the aliquot parts of the multiplicand 
by the multiplier plus the sum of its aliquot parts, which is the sum of aliquot parts of 
the product, from which we subtract the products of any proportion of four terms. 

The last part of the sentence means, as his following exposition will show, 
that no couple of divisors of PI is proportional to any pair of divisors 
of Pz, and therefore (PI' P2) = 1. Otherwise, as al-FarisT indicates further 
on, it is necessary that an aliquot part, at least of PI other than 1, also 
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be an aliquot part of P2. In the case where (PI' P2) '" 1, the repeated 
terms must be subtracted. Lastly, al-FarisI makes an unsuccessful attempt, 
as will be easily understood, at establishing an effective formula for 
the last case, i.e. when n = PIP2' with (PI' P2) '" l. 

All these propositions on the sum function are to be found three 
centuries later. They appear in Descartes,47 to whom historians ascribed 
the formulation. However, we now know they had been stated at the 
end of the thirteenth century by mathematicians who, unlike Descartes, 
also gave most of their proofs as well. 

Still more important than the propositions themselves, is the path 
followed for their discovery, the method chosen by mathematicians for 
establishing them, which consequently determines mathematical ration­
ality itself. In a letter addressed to Mersenne, dated 13 July 1638, 
Descartes mentioned (Mersenne, 1963, p. 345) this method in passing: 
"As for the method I used to find aliquot parts, I say that it is none 
other than my analysis, which I apply to this kind of problem and others 
as well; and I need time to explain it as a rule comprehensible for 
those using another method". Barely one month after Descartes, and 
independently of him, Fermat described his own method for finding 
aliquot parts expressed in the same terms. He wrote to Mersenne on 
10 August 1638 (Mersenne, 1963, VII, p. 27): "Concerning the numbers 
of aliquot parts, if I have time I shall put my analytical method on this 
subject down in writing and will let you know". The terminology -
analysis, analytical method - common to both, is not the result of chance, 
but merely the expression of unity of thought. In such a context, these 
terms, it is true, apparently designate mainly algebra in the sense of 
Viete, i.e. in our opinion it only differs very slightly from the disci­
pline inherited from al-KarajI and his school (supra, pp. 22-33). It 
could be shown generally how, for both traditions, "analysis" was iden­
tified with or substituted for algebra; but if we restrict ourselves to the 
area of aliquot parts, to be convinced it suffices to read what Fermat wrote 
when began to work on the subject. On 16 December 1636, he wrote 
to Roberval (1896, II, p. 93): "Concerning numbers and their aliquot 
parts, I have found a general method for solving all these questions by 
algebra, on which I intend to write a small treatise". Fermat never wrote 
the treatise announced, but an identical role of algebra emerges from a 
reading of Descartes' Excerpta Mathematica; in this way he justified 
the interpretation of the term "analysis" and, in so doing, characterized 
the body of research on aliquot parts in the first half of the seventeenth 
century. 
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But we have just seen that the use of algebraic methods was by no 
means the prerogative of seventeenth-century mathematicians, and that 
it was in fact an acquisition of the thirteenth century at least. Now, it 
was precisely this application of algebra to the traditional field of 
Euclidean arithmetic, this use of algebraic methods in arithmetic, that 
distinguishes al-FarisI's tract from not only the Alexandrian school, but 
Ibn Qurra and his successors as well. The study of the sum function of 
aliquot parts is sufficient proof, but its algebraic character is even more 
apparent on two occasions. Firstly, when al-Farisi achieved his goal, 
and in so doing used algebraic methods: this was the new proof of Ibn 
Qurra's theorem. And the algebraic character emerges again when we 
estimate the extension of this field -- the study of aliquot parts - through 
the impetus of the intervention of algebraic procedures, and when we 
note its independence in relation to the initial goal which was to prove 
the theorem on amicable numbers. It particularly concerns the study of 
the function number of aliquot parts of an integer and the relationship 
between figurate numbers and combinations required by this new study. 

To establish his new demonstration of Ibn Qurra's theorem, al-Farisi 
starts by proving the following theorem (Rashed, 1982b, propositions 
25 and 26). 

LEMMA to. For any natural integer n, we have 

2nqn - 2npn_1Pn + (2n+1 - 1) = qn. 

AI-Farisi sets 2n = x, which he calls a "thing" according to contem­
porary algebraic language, and infers: 

3 9 
Pn-l = "2x - 1, Pn = 3x - 1, Pn-IPn = "2 x(x - 1) + 1, 

it is then sufficient to substitute and identify to obtain the result. 
Now let us examine al-FarisI's proof (Rashed, 1982b, proposition 

27) of Ibn Qurra's theorem. Since (2n, qn) = 1 and qn is assumed prime, 
using Proposition 7, we may write: 

(Jo(2nqn) = (Jo(2n)qn + (J(2n); 

but with Corollary 8 we obtain 

(Jo(2n) = 2n - 1 

(1) 

(2) 
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and 

0'(2n) = 2n+1 - 1; 

substitute (2) and (3) in (1); it yields 

O'o(2nqn) = 2nqn - qn + (2n+1 - 1) 

and with Lemma lOwe obtain 

(3) 

(4) 

On the other hand, since (2n, Pn-IPn) = 1 according to Proposition 7 we 
have 

O'O(2npn_IPn) = O'O(2n)Pn_IPn + 0'(2n)(1 + Pn-l + Pn); (5) 

by (2) and (3), it yields 

O'O(2npn_IPn) = (2n - I)Pn-IPn + (2n+ 1 - 1)(1 + Pn-l + Pn); 

but 

(2n+1 - 1)(1 + Pn-l + Pn) = qn + Pn-IPn - (2n+1 - 1); 

therefore, by substituting in (5), it gives 

O'O(2npn_IPn) = 2npn_IPn + qn - (2n +1 - I), 

hence, according to Lemma 10 

O'O(2npn_IPn) = 2nqn' (6) 

From (4) and (6), we obtain the result, and Ibn Qurra's theorem is thus 
proved. This is al-FarisI's exact method, except for the notation of course. 

Though the sum function had been nedessary for the proof, the number 
function of aliquot parts of an integer was not. It was therefore through 
his interest in the study of aliquot parts themselves, independently of 
Ibn Qurra's theorem, that al-FarisI set out to study this last function. 
Denote to(n), the number of aliquot parts of n, and ten) = to(n) + 1 the 
divisors of n; al-FarisI shows: 

PROPOSITION 11. If n = PlP2 ... Pr with PI' ... , Pr distinct prime 
factors, then 

to(n) = 1 + ( ~) + ... + ( r ~ 1 ) . 
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AI-FarisI states this proposition attributed to Deidier,48 as follows 
(Rashed, 1982b, proposition 9): 

Let a be the number, it is resolved into prime factors, some or all of them may be equal 
or distinct. If all of them are equal, then one of the species of its side is in the homony­
mous position of the number of sides. The first power is the side, and the aliquot parts 
of the number are the side and species smaller than the number, and there are no other 
aliquot parts according to proposition 13 of Book IX (of the Elements) [~ if a = p", 
p prime, then the aliquot parts of a are l, 0 ~ k < n]. If they are all distinct, let them 
be b, c, d, e. Multiply b by c, by d and bye; c by d and bye; d bye. We have six 
two-term combinations. Then, in turn set aside one factor and combine the three remaining 
factors; we have four three-term combinations. There are no aliquot parts left. So we 
have all the aliquot parts without exception: the unit, the prime factors and their combi­
nations. 

Before returning to the method to find these combinations, note that 
al-FarisI uses the following proposition, but without establishing it 
completely:49 

PROPOSITION 12. If n = pp p~2 ... p~', with PI' P2' ... ,p, distinct 
prime factors, then 

r 
t(n) = n (e j + 1). 

;=1 

2.3. Is there a simple method for enumerating all the combinations 
necessary for calculating the number of aliquot parts of an integer? It 
was in response to this very practical question that an ancient chapter 
of arithmetic was taken up afresh: figurate numbers. As we shall see, 
the effectiveness of this resumption lies in the extension of the notion 
of a figurate number to any order, and the new, resolutely combinato­
rial interpretation that was made. On the one hand, we are no longer 
limited either to polygonal or pyramidal numbers and on the other, 
figurate numbers are identified with binomial coefficients, which will 
be the subject of combinatorial interpretation from henceforth. In this 
way, each term occurs as often as it is possible to transpose the letters 
that compose it. For instance, the coefficient of a2b is given by the 
possible number of arrays of aab, i.e. aab, aba, baa; namely three. These 
two interdependent acts - extension and interpretation - assume a vital 
importance for the history of combinatorial analysis and have been attrib­
uted to Fn!nicle, Rene-Fran~ois de Sluse and Pasca1.50 We propose to 
show that they had already been achieved by al-FarisI's time at least. 
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Let us start by recalling what we showed earlier (supra, pp. 261-274), 
i.e. the existence of two combinatorial activities from the late tenth 
century. The first was the work of algebraists who, since al-KarajI, were 
acquainted with the arithmetical triangle and its rule of formation, and 
used combinatorial practice when dealing with systems of linear equa­
tions (AI-SamawJal, ed., 1972, French introduction, pp. 77ff.). The second 
was the work of lexicographers in particular, who correctly combined, 
arranged and applied quite obviously general rules, but without bothering 
to formulate them explicitly. In the present state of our knowledge it 
appears that the focal point for both activities lies in the field of figurate 
numbers. The essential components of algebraic and lexicographic 
investigations had therefore been established, in all likelihood, before the 
end of the thirteenth century, and this unification is contained in al­
FarisI's tract. However, to appreciate the progress made before al-FarisI, 
let us briefly recall the introduction of figurate numbers in Arabic 
mathematics. 

Since Ibn Qurra's translation of Nicomachus of Gerasa's Introductio 
arithmetica, Arab arithmeticians were familiar with the table of poly­
gonal numbers as given by Ibn Qurra in his translation: 51 

triangle number 3 6 10 15 21 28 36 45 1/2n(n + 1) 
square number 4 9 16 25 36 49 64 81 n2 

pentagonal number 5 12 22 35 51 70 92 117 i/2n(3n - 1) 
hexagonal number 6 15 28 45 66 91 120 153 n(2n - 1) 
heptagonal number 1 7 18 34 55 81 112 148 189 i/2n(5n - 3). 

A reading of Nicomachus' text suffices to show that he knew the rule 
for forming this table, which may be rewritten 

p~ = P~-l + p~-l, 

with p~ the unit of the nth row and the rth column. 
From the tenth century onwards, this table was reproduced ad lib by 

increasing the number of rows and columns; for instance, in treatises 
on arithmetic such as those by aI-BaghdadI, Avicenna, Ibn al-BanniP and, 
later al-Umawl. Clear progress was accomplished in calculating the 
powers of n natural prime integers at the same time. This movement 
reached its climax in Ibn al-Haytham's proof52 of an expression known 
to his predecessors, such as al-QabI~I,53 and contemporaries such as al­
BaghdadI:54 
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If we confine ourselves to figurate numbers, let us first study their 
sums. For example, this was how aI-BaghdadI calculated pyramidal 
numbers, and proved that a pyramid of root n is of the form 

1tn =.!. r k(k + 1) = n(n + 1 )(n + 2) 
2 k=l 6 

He calculates solid numbers in the same way,55 starting with n first 
squares, and next n first pentagonals: 

r k2 = n(n + 1 )(2n + 1) 
k=l 6 

.!. r k(3k - 1) = n2(n + J.2. . 
2 k=l 2 

Until then, contrary to what had been observed in the study of the 
powers of n first natural integers, nothing radically new nor particu­
larly significant had been added to the achievements of Hellenic works 
on figurate numbers, apart from some results relating to the sum of 
these progressions and, more generally, greater knowledge about the 
properties of rows and columns;56 to which should be added the rejec­
tion by most mathematicians of any geometrical representation of figurate 
numbers. Apart from these few features nothing else emerges from an 
examination of known documents. 

However, at the end of the thirteenth century, two contributions appar­
ently challenged this limitation of knowledge about figurate numbers, 
which is merely the result of a lack of sources. The first, partial it is 
true, was due to Ibn al-Banna?; the second, much more general, was 
the work of al-FarisI. Since the first died in 1321, and the second in 1320, 
and since Ibn al-BannlP was Moroccan, while al-FarisI was Persian, 
and lastly, since neither of them claimed the discovery, but both appar­
ently expounded known results, for all these reasons, there are grounds 
for thinking that both mathematicians are inscribed in the filiation of a 
common heritage. 

In the commentary on his own book on arithmetic,57 Ibn al-BanniP, 
after studying polygonal numbers, considers triangular numbers and 
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numbers generated by their sums, i.e. figurate numbers of the 4th order. 
He then relates combinations used in lexicography and these figurate 
numbers. Such an act is important and must be analyzed in detail. Ibn 
al-Bannit" recalls that combinations of p elements in threes are given 
"by the sum of the triangular numbers whose side is always equal to 
the given number minus two; and the sum of triangular numbers is 
obtained by multiplying this last side by the product of two numbers 
that follow it, and by taking the sixth of the product". 58 

For instance, if we call p the number of items, Fi the triangular 
numbers, Ibn al-BanniP's assertion is written 

( P) _ Pi,2 F _ pep - 1)(p - 2) 
3 - k=! k - 6 . 

To justify this result Ibn al-BanniP returns to the general case of com­
bination of p terms k by k. But this is precisely where he omits figurate 
numbers. Ibn al-BanniP gives an equivalent expression to 

and 

( p) _ pcp - 1) 
2 - 2 

( P) _ (p - 2) (P) 
3 - 3 2' 

before generalizing, or, as he wrote, 

the ternary (combination) is thus obtained by multiplying the binary (combination) by 
the third of the third term preceding the given number; and so we always multiply the 
combination - 'adad al-tarkib - that precedes the combination sought by the number 
that precedes the given number, and whose distance to it is equal to the number of com­
binations sought. From the product, we take the part that names (the number) of 
combinations. 59 

In other words, Ibn al-BanniP stated 

( p) _ p - (k - 1) ( p ) 
k - k k-l' (1) 

Ibn al-BanniP proved this relation using a kind of archaic recurrence, 
defined earlier (supra, pp. 62-84). Let us reproduce the proof in Ibn 
al-BanniP's own words so as to appreciate his style which interests us 
particularly. Let p be the given number of elements to be combined. 
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To obtain two-term combinations, Ibn al-BanniP gives no proof, but takes 
up "the sum of successive numbers from the unit to the number preceding 
the given number.,,60 For three-element combinations, he writes: 

each binary term is combined with one of the remaining (elements) of the given number. 
Ternary combinations are therefore the product of binary combinations by the given 

number minus 2, which is the third number preceding the given number [ (p - 2) ( ~ )]. 

But since there are three binary combinations for each ternary combination, it follows 
that the ternary combination will be repeated three times: itself and two of its permuta­
tions. For example, if we combine a and b with c, we will have a and c with b, and b 
and c with a. But these three ternary combinations give the same ternary combination.61 

Ibn al-BanniP therefore concludes: "It is necessary to take the third 
of the binary combinations which is multiplied by the remainder of given 

the number [( ~ (i)) (p - 2) ], or binary combinations are multiplied 

by the third of the remainder of the given number [( i ) (p ~ 2) ] ."62 

He used a similar reasoning for k = 4, concluded for k = 5 and so on 
for any k. From the above, Ibn al-Bannip63 derived the relation 

( p) _ p(p - 1) ... (p -- k + 1) 
k - k! ' (2) 

which is to be found later in Cardano, and then Fermat.64 

If we only consider the results, nothing is really surprising. Not only 
the multiplicative expression (2) but the relation (1) which made its 
determination possible, are easily deduced from the additive law of the 
formation of the table of binomial coefficients. This law, as we know, 
announced and proved three centuries earlier by al-KarajI, and repro­
duced by al-SamawJal in the twelfth century, had not ceased to be 

transmitted.65 It is true that Ibn al-BanniP did not prove the case ( 7 ) ; 
one might think he had wanted to avoid ( ~ ) in this way, though given 

in the arithmetic triangle as it had been represented by al-SamawJal, 

for example.66 But he did not prove the case (~) either, and was 

satisfied to write: "Binary combinations consist of an assembly of 
successive numbers from the unit to the number preceding the given 
number (of elements)".67 Although we are not in a position to confirm 
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it, it seems unlikely that Ibn al-BanniP or his sources were ignorant of 
this triangle. In fact the relative lack of an effective practice of 
combinatorial clashes with a formulation whose generality is such that 
it can only be justified outside this practice, in other words, in the 
mathematician's formulation of the rule of the formation of this triangle. 

But, in our opinion, there is something more fundamental than these 
results: it is precisely the combinatorial appearance of Ibn al-BanniP's 
exposition, together with the relation he partially established between 
figurate numbers and combinations. It concerns, in the first place, 
triangular numbers and combinations of p objects in twos, and then 
figurate numbers of order 4 and combinations of p objects in threes. 
Let us cite Ibn al-Bannit": 

It follows from that, if one of two successive numbers is multiplied by half of the other, 
the product is equal (to the number of) binary combinations of the greater of the two 
and is equal to the triangular number (whose side is) the smaller of them following the 
above. If we multiply three successive numbers, the first by the half of the second, and 
the product by a third of the third, the product is equal (to the number of) ternary 
combinations of the greatest and is equal to the sum of successive triangular numbers 
up to the triangular number (whose side is) the smallest of these numbers.68 

Such results are far from insignificant for the age. Let us just remember 
that, even in the seventeenth century, Bachet de M6ziriac did not suggest 
anything more important on the subject.69 But it is surprising that 
Ibn al-BanniP stopped at two orders of figurate numbers and the relation 
between figurate numbers and combinations was so soon exhausted. 

Our question is more precise: why, when he disposed of all the 
necessary arithmetical and combinatorial means for establishing the 
relation between figurate numbers and combinations in all generality, did 
Ibn al-BanniP turn away so quickly? To answer these questions, we are 
apparently reduced to considering aliquot parts and arithmetic 
functions. In the chapter devoted to combinations of two types of figurate 
numbers, Ibn al-BanniP apparently only aimed at showing the useful­
ness of figurate numbers for calculating "the combinations of ternary 
words" in the domain of lexicography and completely disregarded aliquot 
parts. Furthermore, in the same chapter amicable numbers are neglected 
as "useless". 70 The situation is entirely different when the mathemati­
cian is involved with the study of aliquot parts and has to find all the 
necessary combinations for the calculation of their number. He is then 
obliged to proceed to an entirely different order of generality and can 
no longer stop at what Pascal will call "the use of the arithmetic triangle 
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for numerical orders". However, all the above has been found in al­
FarisI's tract. 

And, indeed, the status of figurate numbers is radically different 
when one wishes to answer the question of the number of aliquot parts: 
the mathematician is no longer interested in a specific polygonal or 
pyramidal number but figurate numbers of any order. Such a level of 
abstraction calls for a general formulation. To form the latter, al-FarisI 
states in an equivalent way the relation 

(3) 

with Pf, the pth the figurate number of order q, F{ = 1. 
With the aid of (3) he constructs Table 2 (Rashed, 1982b, proposi­

tion 16) as an example. 

TABLE 2 

their '0 ..c:: .s .s c: c: .s numbers - 0 '8 t:: ..c:: .s ., ..c:: ~ '" (,) = .::: .~ > ~ c: ... ., :s ..8 II) 'i) '2 S sums <.::: '" <.::: '" '" 
2 3 4 5 6 7 8 9 10 11 

first 3 6 10 15 21 28 36 45 55 66 
second 4 10 20 35 56 84 120 165 220 286 
third 5 15 35 70 126 210 330 495 715 1001 
fourth 6 21 56 126 252 462 792 1287 2002 3003 
fifth 7 28 84 210 462 924 1716 3003 5005 8008 
sixth 8 36 120 330 792 1716 3432 6435 11440 19448 
seventh 9 45 165 495 1287 3003 6435 12870 24310 43758 
eighth 10 55 220 715 2002 5005 11440 24310 48620 92378 
ninth 11 66 286 1001 3003 8008 19448 43758 92378 184756 
tenth 12 78 364 1365 4368 12376 31824 75582 167960 352716 

AI-FarisI then shows an expression equivalent to 

F~= (P+:-l) (4) 

and thus establishes a relation between figurate numbers of any order 
and combinations. As a result, from henceforth, it is possible to refer 
to the table of figurate numbers to know the number of aliquot parts. 
He writes: 
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The method for recognizing binary aliquot parts (two-term combinations) or ternary or 
others with any number of sides, on condition that they all be prime and distinct, consists 
of seeking in the sequence of the homonymous sums of the number of time by which 
one combines ['adad al-ta'lif] minus one, the number whose rank - that is the first 
numbers (in the sequences) of sums (column indices) - is homonymous of the number 
of sides minus the number of times by which we combine. It gives the number of 
combinations (Rashed, 1982b, proposition 17). 

To clarify the idea, assume the given integer is decomposed into n prime 
distinct factors, and seek the number of aliquot parts of m elements, 
with 0 < m < n. We therefore seek in the table the item to the (m-l)th 
row and the (n-m)th column. If we complete aI-ParisI's table by adding 
the row and column whose items are all equal to 1, i.e. F~ and F~, and 
then by adding the row whose items are natural integers, that is F1, we 

then obtain F'!m+l which, according to (4), is equal to (~) .71 Note, 

moreover, G~ the elements of the above incomplete table. Then G~ is 
equal to F~!:. 

To prove the above proposition al-FarisI proceeded in a fully com­
binatorial way by applying in succession the arithmetic triangle whose 
various "cells" are interpreted as combinations of p objects k by k. The 
combinatorial style clearly more mastered than that of Ibn al-BanniP, 
dominated his entire work. This interpretation and style are as impor­
tant for the history of combinatorial analysis as for number theory; so 
it is advisable to cite al-FarisI himself. He starts by examining the case 
of an integer decomposed into five prime distinct factors and seeks the 
number of two-term aliquot parts to show that it is equal to G~ = FJ = 
10. He repeats the same reasoning for an integer decomposed into six 
distinct prime factors, and still using combinatorial formulas, shows 
that the number of three-item aliquot parts is equal to G~ = F~ = 20. 
As the proposition is proved for five elements taken in twos and six 
elements taken in threes, al-FarisI then assumes it true for n items taken 
k by k, with (1 ~ k ~ n). 

Let, a, b, c, d, e, be the sides, the binary combinations do not fail to include e among 
their sides or not. In the last case they include d or not. In this last case a or b or c 
must be cancelled. The binary combination of these three (elements) are therefore three, 
the homonymous rank of the number of sides minus the number of times by which we 
combine - i.e. two; which is the first rank of sums, homonymous of the number of 

times by which we combine, minus one, i.e. the first [( ~ ) = 3 = Gl = F~ ] . The binary 

combinations including d but not e, have as the other side one of the three remaining, 
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a, b, c. There are three of them. Binary combin.ations of a, b, c, dare thereore six according 
to the rule mentioned. Those including e, include as the other side one of the four remaining 
- a, b, c, d. There are also four of them. Binary combinations of these five (sides) are 
therefore ten, which is in the first sums at rank three, homonymous to the number of 
sides minus the number of times by which we combine (Rashed, 1982b). 

Hampered by the incompleteness of his table, aI-Faris! omits some 
stages in his reasoning which may be summarized as follows. He first 
establishes that 

(. 42) = (3) (3 ) 2 FI I I FI 2 2 + 1 = F2 + 3 = FI + F2 + 3 = F 3, 

and then 

he then substitutes, and obtains 

( ; ) = (;) + (i) + (~) = F: + F~ + F~ + F! = F~. 

This expansion does not force the meaning of al-FarisI's thought and 
is amply confirmed by his proof of the following case: six factors, the 
number of combinations three by three. He writes (Rashed, 1982b): 

Let a, b, c, d, e, f be these sides. Ternary combinations will not fail to have f as one of 
their sides or not. In the last case one of their sides is e, or not. In the last case, i.e. 
when they are combined with a, b, c, d - only four - it is necessary that (each time) 

one of them does not exist. We therefore have four [( ~ )] , i.e. the first term of the 

second sum [G~ = FD. Each combination containing e but notf, contains as two other sides 
the two sides of one of the binary combinations of the remaining sides, i.e. a b, c, d, 

that is six [( ~ )] ; these ternary combinations are also six. Ternary combinations from 

a, b, c, d, e ~ five - number ten [( ; ) = (~ ) + (~)] . Each combination containing 

f has as the two remaining sides, one of the binary combinations of a, b, c, d, e - the 

five remaining - which number ten [(;)] ; they are also ternary and number ten. Ternary 

combinations from a, b, c, d, e, f, theretore number twenty [( ~ ) = (;) + (;)], which 

is the number of the second sum, homonymous of the number of times by which we 
combine minus one. of rank three, homonymous of the number of sides by which we 
combine [G~ = F~l. 
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We see therefore that aI-FarisI proceeds as above using the results just 
obtained; he establishes in succession 

(5) (4) (4) 3 2 2 2 2 1 3 = 3 + 2 = F2 + F3 = FI + F2 + F3 = F3, 

and 

(~) = (;) + (;) = (~) + (~) + (;) 

= Fi + F~ + F~ + F~ = F~. 
So al-FarisI proved his proposition by resorting to an archaic recur­

rence mentioned earlier; but his stumbling block lies in a reasoning 
dependent on a double index without any form of symbolism at his 
disposal. 

In his computation of combinations for determining the number of 
aliquot parts of an integer, al-FarisI therefore takes up binomial coeffi­
cients again, but in order to provide a resolutely combinatorial 
interpretation. Such an act, the foundation of combinatorial analysis itself, 
also enabled him to conceive figurate numbers in an incomparably more 
general sense that anything encountered in the works of al-FarisI's known 
predecessors and contemporaries. The above table - still used by 
Bernoulli72 - only represents a model, a handy instrument for al-FarisI; 
in his own words (Rashed, 1982b, proposition 16): it "facilitates obtaining 
[figurate numbers] for those that seek them" and "constitutes a model 
- mithal - for he who wants to determine others from them". The first 
consequence of this generality was to reorientate mathematical language 
towards greater abstraction. It is true that well before al-FarisI the 
geometrical representation of polygonal numbers had fallen into disuse, 
and if it survived on odd occasions, it was only as a relic to bolster the 
imagination of those for whom elementary courses in arithmetic were 
intended. Such a representation was naturally banished from a work of 
research such as al-FarisI's tract; furthermore, nothing remains of the 
geometric qualification of numbers. Even terms such as triangular, 
pyramidal etc. for designating figurate numbers have disappeared. From 
henceforth aI-FarisI only uses the language of the sequences of sums -
mujtamiCat - of such an order. However, scholars like Frenicle, Pascal 
and Bernoulli will express themselves in identical terms later on.?] 

Compared with the study of his contemporary Ibn al-Bannac, al-
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FarisI's exposition is distinguished, not only by its generality, but by 
an entirely different subject matter. But, when compared with that of 
Pascal, i.e. the first "usage of the arithmetic triangle", it stands up to 
comparison by accounting for the problem examined, the generality 
achieved and the concern for proof that animates it, though it undoubt­
edly remains more opaque and elaborate. In both cases, it is true, as 
for Frenicle, generality is assured by a more or less direct but always 
effective knowledge of the arithmetic triangle. Again, in all three cases, 
a distinction must be drawn between the combinatorial approach and 
another, no less general, arithmetical approach. To elucidate the differ­
ence, in this case fundamental, let us examine a plausible interpretation 
of Fermat's proposition in the famous Letter XII: He wrote (1896, III, 
pp. 291-292): "In natural progression, we have double the triangle whose 
side is the last number, by multiplying the latter by the number imme­
diately above; we have the triplet of the pyramid whose side is the last 
number by multiplying this by the triangle of the number immediatly 
above; we have the quadruple of the triangulo-triangle of the last number 
by multiplying this by the pyramid of the number immediatly higher 
and so on to infinity by a uniform method". This proposition is rewritten: 

That this result was established before Fermat is relatively unimpor­
tant here.7• Greater emphasis is laid on the method that enabled him to 
achieve it and about which we nothing certain as yet in the absence of 
prooC5 Nonetheless, the expression "uniform method" apparently des­
ignates here a call for induction _. not necessarily mathematical, as 
authorized by practice long after Fermat - and probably non-combina­
toria1. 76 AI-FarisI's contribution, like that of Frenicle and Pascal, is 
undoubtedly less natural insofar as it employed means other than purely 
arithmetical ones. His contribution borrowed its generality from com­
binatorial interpretation and the study of the function: "the number of 
aliquot parts"; and it was precisely the last study that provoked the 
interpretation itself. So al-FarisI's research could not have been antici­
pated by mathematicians who, according to an ancient tradition, were 
only inten~sted in figurate numbers; but only by those, like Na~Ir al­
DIn ai-rUST, who were interested in the combinatorial interpretation. 77 
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CONCLUSION: CLASSICAL NUMBER THEORY 

With Thabit ibn Qurra we are firmly placed in the framework of 
Hellenistic arithmetic. Himself a translator of Euclid and Nicomachus 
of Gerasa, it was in the wake of these mathematicians that he conceived 
and achieved a theory of amicable numbers. All his investigations on 
perfect numbers, his discovery of amicable numbers, like the works of 
his successors (e.g. aI-BaghdadI) are inscribed in the tradition of 
Hellenistic arithmetic. But whereas this arithmetic, like others, was the 
subject of intense reactivation, algebraists were involved in expanding 
and even renewing their discipline; and this task was, as we showed 
elsewhere, accomplished with the aid of arithmetic. But what should 
be emphasized here is the central position of this algebra for the 
development of number theory. 

This was how, with mathematicians such as al-Khazin, in relation to 
and, in some respects against, this algebra, an important chapter of this 
theory was elaborated in the tenth century: Diophantine integer analysis. 
In the same century and early in the next, it was in connection with 
this analysis that one of the central issues of number theory was posed: 
the search for a necessary and sufficient condition for characterizing 
prime numbers. We have shown elsewhere how Ibn al-Haytham for­
mulated the question and how he managed to answer it by stating 
Wilson's theorem. The dialectic between arithmetic and algebra encom­
passes an entire chapter of numerical analysis, including another devoted 
to the solution of numerical equations. But if one only considers number 
theory, it has been shown this time that such a dialectic did not dispense 
with the Euclidean legacy. It was in fact thanks to algebraic methods 
that ai-Faris!, notably, constructed a new chapter which may be entitled: 
aliquot parts and the combinatorial interpretation of figurate numbers. 
The introduction of algebraic methods themselves did not in fact obey 
any preconceived, careful and theoretically elaborated purpose: it quite 
naturally forced itself upon a mathematician trained in the algebraic 
tradition and grappling with the problem of Euclidean arithmetic, by 
offering him the means to abandon, at least locally, the framework of this 
arithmetic in order to join the vast domain of classical number theory. 
Within this discipline, areas and chapters that were no longer fully 
Euclidean will coexist with Euclidean arithmetic. We have already named 
two chapters, to which may now be added aliquot parts and figurate 
numbers. 
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On reading historians of mathematics, one notes that the discoveries 
and results recalled are generally considered the work of mid-seventeenth, 
if not eighteenth-century mathematicians; furthermore, it was precisely 
these results that provided the basis for a definition of a new arith­
metical rationality. Has it not often been maintained that the study of 
aliquot parts by Descartes and Fermat inaugurated a new era, whereas 
that of figurate numbers by Frenicle and Pascal represented a new 
rationality? But beyond mere historical error, such a misunderstanding 
might distort the understanding of the history of number theory itself 
in the seventeenth century. By dint of seeing novelty where there was 
none, it was overlooked where it did in fact exist. Ignorant of the place 
of number theory in Arabic mathematics, one might have considered 
this chapter on aliquot parts and figurate numbers, like Diophantine 
integer analysis, to be the work of early seventeenth-century mathe­
maticians. In our language this would amount to defining the originality 
of the latter by the intervention of algebraic methods in number theory. 
There is then a high risk of misunderstanding Fermat and limiting the 
scope of his work which developed, not as a continuation of but rather 
as a break with this so-called algebraic number theory. As a result, the 
beginning of purely arithmetical number theory around 1640 cannot be 
pinpointed with sufficient clarity, a problem amply discussed elsewhere 
(Rashed, 1984, introd.). 

To conc:1ude with Arabic mathematics, the thesis that number theory 
is their weak point does not stand up to the facts reconstructed throughout 
our various studies. We have shown that Diophantine integer analysis, 
the search for a criterion for recognizing prime numbers, the study of 
aliquot parts and figurate numbers, research on perfect numbers, are 
just so many chapters of new number theory elaborated from the ninth 
century onwards. These chapters alone suffice to impose a revision of 
the history of elementary number theory, and above all, a correction of 
commonly accepted periodization. Nothing validates the separation of 
works composed in the ninth century into different eras from those 
accomplished in later centuries, before 1640, insofar as until that date, 
results and methods did in fact refer to the same arithmetic. Classical 
number theory followed the Hellenistic period; it preceded the new theory 
that is seen to begin with Fermat's works. 
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NOTES 

1. See, in particular, Pacioli (1494). Fibonacci's Italian successors who lived before 
Luca Pacioli were just as important. See, in particular, Picutti (1979). 

2. Woepcke (1852), pp. 420-429 where he summarizes Ibn Qurra's Opuscula. We 
have consulted several manuscripts of this work, notably: Aya Sofya MS 4830, ff. 
llOv-12I'; Paris, Bibliotheque Nationale, MS 2457, ff. 170'-180'. 

Other manuscripts of the same work exist and should be consulted for a truly 
scientific edition which is still to be made. 

3. See, in particular, Dickson (1919, vol. I, p. 38); Borho (1979, 2. Auflage); Hard (1967, 
pp. 37-38). 

4. Remember that in proposition IX-39, Euclid gives the sum of the geometric 
progression of ratio 2; and proposition IX-36 is rewritten: 

If I + 2 + 22 + ... + 2P = 2P+1 - I is a prime number, then 2P(2p +1 - I) is a 
perfect number. ' 

The definition of the perfect number as a number such that the sum of its aliquot 
parts is equal to it, or, as Euclid (Elements, VII-22) wrote: "'to"EtO<; ~te)..L6<; fO'ttV 
o 101<; taU'toi'l )..LEPEOW '(0'0<; i!Jv", appears for the first time here. It has prevailed 
since then as in Theon of Smyrna and Nicomachus. For instance, Theon (1892), p. 
74), wrote: "Xat 'tEAEtOt )..LEU datu ot 101<; m'nwu )..LEPEatU '(O'Ot, d><; 6 'twv <;"'. 
Similarly, on perfect numbers, Nicomachus (1866, p. 39) wrote, "that it is always 
equal to its own parts", "[('nEt iO'o<; 10(<; ta.U'toi'l )..LEPEatU]" cf Introduction, XVI, 
ed. R. Hoche, Leipzig, 1866, p. 39. This expression was perfectly rendered in Thlibit 
b. Qurra's translation by "Wa-lakinnahu abadan musiiwin li-aJza:ihi". See Ibn Qurra 
(ed., 1958, p. 38). 

5. Exploited by many later scholars, Hultsch's hypothesis was well summarized by 
Tannery whom Hard cited (1961, pp. 69-70). 

6. See the introduction to his tract in the Bibliotheque Nationale, Paris, MS 2457, op. 
cit. 

7. Ibn Qurra, op. cit. 
8. The Arabic terminology in this field leaves no doubt about the Greek origin of 

the term. Moreover, Thabit b. Qurra's translation of Nicomachus' Introduction 
apparently established this terminology. For instance, the "perfect" number, 'tEAEtO<;, 
was translated by tiimm, a term whose root like the Greek root, contains the idea 
of completion and achievement. The terms "abundant" and "deficient" DltEp'tEA1'\<; 
and EAAtlt1'\<;, were first given by Ibn Qurra as "more than perfect", al-zii'id 'alii 
al-famiim, and "less than perfect", al-niiqis Can al-famiim, respectively. This trans­
lation was forgotten later, and only al-ziiJid, abundant, and al-niiqis, deficient, were 
retained. The expression friendly (or amicable) number, cpfAOt aptu)..Lof, was rendered 
by al-'adiid al-muta};iiba. 

9. AbU Man~Ur 'Abd al-Qahir ai-BaghdadI (d. 1037), AI-TakmilafT al-lfisiib (Istanbul, 
Laleli, Siileymaniye, MS 270811. f. 59). 

This definition of equivalent numbers is to be found in this text. The author 
then states the following problem; "Given a number, to find two numbers whose (sum) 
of the parts of each of them is equal to this given number". It therefore implies seeking 
the reciprocal image of the given number a by 0'0' AI-BaghdadI proceeds as follows: 
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"Subtract one from the given number and divide the remainder by the (sum) of two 
prime numbers, and next by the (sum) of the two other prime numbers and so on 
as far as two prime numbers may be divided. We then multiply both parts of the 
first division by each other, and we multiply both parts of the second division by each 
other, and next we proceed as before for the third division, the fourth and following 
divisions; (the sum) of the parts of each of the products is equal to the given number". 
For instance, let a be the given number. The problem is to find all the equivalent 
numbers related to a, i.e. CJ(j1 (a). AI-BaghdadI proceeds as follows: Find Pi' qi 
prime (i = I, 2, ... ), such that 

a = 1 +Pi + qi' 

it yields 

CJ(jI(a) = {Piqj} = {bj} (i = I, 2, ... ), 

and bi are equivalent numbers. 
It is clear that CJo(b) = CJo(Nli) = a (i = I, 2, ... ). 
AI-BaghdadI gives the example a = 57, PI = 3, ql = 53; P2 = 13; P2 = 43, where 

b l = 159, b2 = 559; and thus only gives two elements of the reciprocal image. 
In 'Umdat al-Ifisab (MS. Ahmad m, Topkapi Saray 3145) al-ZanjanI repeats 

the same definitions, takes the same example and finally gives 

CJ(jI(57) = {159, 559, 703}. 

The study of these equivalent numbers is found in several later treatises on arithmetic. 
10. In al-ZanjiinI's treatise, op. cit., we find these numbers again and the incorrect 

proposition which affirms that n = 120 is the only number that verifies CJo(n) = 2n. 
11. See Ibn Qurra, op. cit., Prop. 10. 
12. Ibid., Prop. 1. 
13. Ibid., Prop. 2. 
14. Ibid., Prop. 3. 
15. Ibid., Prop. 5. 
16. Ibid., Prop. 6. 
17. Euler obtained a generalization of Ibn Qurra's proposition, that sets. 

a = 2" - 1 + 2"-a, b = 2" - 1 + 2"+a, c = (2a +1)222"-a - I, 

three prime numbers; a. is necessarily odd if c is a prime number. Ibn Qurra's theorem 
clearly corresponds to a. = 1. Cf. Lucas (1958), pp. 380-381. 

Note also that Paganini found the couple (1184, 1210), unobtainable by Ibn 
Qurra's method. Cf. Dickson (1919), p .. 47. 

18. Seejijam'i 'anwa'i min al-a:dad, MS Aya Sofya 4832, ff. 85v-88v• However, some 
sentences are missing from the text, probably omitted by the copyist. AI-Qabi~i forms 
successively 

p" = (2"+1 - I) + 2", P"_I = (2"+1 - 1) - 2"-1, q" = 2"+1(2"+1 + 2"-2) - 1. 

19. Other recently discovered examples are proof of contemporary interest in this theorem, 
cf. infra, p. 330, note 1. 

20. AI-KarajI (ed., 1964), Arabic text, p_ 7. The chapter is intitled Bab ji zikr falab 
al-'adad al-mutal:!lJba, pp. 26ff. 
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2l. AI-KarajI starts by deducing the definition of amicable numbers from the following 
proposition: 

Let (m. n) be a couple of amicable numbers, then it is necessary that one of 
these numbers be deficient (that is m, the other abundant (that is n) and that 

m - O'o(m) = O'o(n) - n. 

He then proves the two propositions Ibn Qurra gave above, before stating the 
proposition which may be rewritten as follows: 

n 
Let PI' P2' q be three odd prime numbers such that q > s = L 2k, q - S = 

k=O 
(1 + PI + P2)S - PIP2' then 2nq is deficient, 2nPIP2 is abundant, and 2nq and 2nPIP2 
are amicable. 

To prove that 2nq and 2nPIP2 are amicable, al-KarajI uses the necessary 
condition given by the above proposition as a sufficient condition. 

22. AI-BaghdadI, al-Takmila. 
23. AI-BaghdadI (al-Takmila), writes: "the prime odd abundant number is twelve and 

any odd number smaller than nine hundred and forty-five is deficient, and the prime 
odd abundant number is nine hundred and forty-five". 

24. AI-BaghdadI, al-Takmila. 
25. Ibid. 
26. For example, the numbers of the form 2n are not perfect, since 0'0(2n) = 2n - 1. 
27. Ibn SInli (ed., 1975, p. 28). If we correct the reading of the edition, Avicenna's 

text becomes crystal clear and is translated as follows: 
If (2n+1 - 1), Pn-I' Pn are prime, then 2npn_IPn and 2n(Pn_1 + Pn + Pn-IPn) = 2nqn 

arid are amicable. 
Therefore if we add the condition qn prime, we find Ibn Qurra's theorem again, 

with the superfluous condition (2n+1 - 1) prime. 
28. AI-ZanjanI, 'Umdat al-lfislib, f. 69r • AI-ZanjanI was a compiler, his treatise, as yet 

unstudied, is a good example of what a man well versed in arithmetic would know 
in the first half of the twelfth century. Note, however, that he wrote (f. 68V): "any 
perfect number greater than six is evenways even odd". Is this a clumsy way of 
affirming that all even perfect numbers are Euclidean? It seems highly probable, in 
any case, that contemporary mathematicians dealt with the characterization of perfect 
numbers as the above affirmation goes to show at least. It is also true that they 
were interested in the computation of perfect numbers. Several indications in later 
treatises show that they calculated perfect numbers other than those given by 
Nicomachus of Gerasa, e.g. the fifth perfect number. 

29. Zayn ai-Din al-TanukhI. See his Treatise on Arithmetic, MS Vatican 317,2 f. 78. 
Cf. our edition Rashed (1982b). According to 'Umar Kal}lila (1957, vol. 6, p. 286), 
TanukhI was a thirteenth-century linguist. 

30. This is in fact an important text edited by Souissi (1976), pp. 193-209. Souissi (1975) 
gives a complete French translation of this manuscript. 

There is however no evidence for categorically attributing this manuscript to 
Ibn al-Banna'. The comparison between Ibn al-Bannli"s two treatises, i.e. Talkhi-r 
A'mlil al-lfislib and Raj' al-lfijlib and a study of the manuscript itself, seems 
to indicate that it is probably an opuscula by Ibn al-Banna"s commentator, e.g. 
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Ibn l:Iaydiir (d. 1413), whose name was cited in another opuscula in the same 
collection which includes this study of amicable numbers. A hypothesis that Souissi 
did not reject when submitted to him in a recent correspondence. So it is in all 
likelihood a later manuscript, dating back to the fourteenth century, and its author 
apparently gives a known rather than a recently discovered result. 

31. AI-Umawl (ed., 1981), p. 34. YacIsh ibn IbrahIm al-UmawIwas a fourteenth-century 
mathematician. In his formulation of Ibn Qurra's theorem, he added, like Avicenna, 
the condition (2n+1 - 1) prime. 

32. AI-Klishl (ed., 1977), pp. 484ff. Here al-Klishl gives Ibn Qurra's theorem again, 
but without indicating that that qn must be a prime number. This error was noted 
by al-KlishT's successor, MUQammad Bliqir ai-YazdI, who noted that it involved 
another: al-Klishl considered 20234 and 2296 to be amicable; he was not aware of 
his error as he was also wrong when he stated the proper divisor of 2296. 

According to M. b. ai-YazdI, following al-KlishI, Sharaf ai-DIn ai-YazdI, also 
made a mistake in Kunh al-murad fi cilm wifq wa al-acdlld. 

33. Sharaf ai-DIn ai-YazdI, see note above. 
34. MUQammad Bliqir ai-YazdI, CUyun al-flisab. See Rashed (1982b). 
35. Mersenne (1962, VII, p. 131). 

It is still not known whether there exists an infinite number of couples (m, n) 
of amicable numbers. The present situation (1981) may be summarized as follows: 
Note A(x) the number of couples, with m < n < x. Erdos conjectures that 

A(x) = o(x/(ln x)~ for any k .. 

Bomerance confirms that 

A(x) ;;;; x exp{-(ln X)I/3}. 

See Guy (1980, 1, pp. 31-33). 
36. According to the dates of al-TaniikhI (13th c.), the calculation of Fermat's couple 

was apparently known before al-FarisI; not in the same way of course, but the 
result at least was known before 1307. 

37. AI-YazdI died around 1637. We have identified a large number of copies of his 
manuscript scattered in various libraries all over the world, proof of its circulation. 

38. For the text and table see Rashed (1982b). 
39. This is an elementary treatise by MUQammad b. al-l:Iasan b. IbrlihIm al-cAgar 

al-AsfardI, al-Lubllb fi al-lJisllb, Bodleian, MS Marsh 663 (10), f. 238v• 

40. AI-FarisI's tract entitled, Tadhkirat al-af]bllb fi bayan al-taf]llb, may be translated 
as A Tract for friends to show amicability. This manuscript, whose importance was 
emphasized by ancient bibliographers, was only recently lost. Just to give one 
example, this is what Tlishkupri-Zadeh (ed., 1968, I, p. 396) wrote: "Concerning the 
method for determining amicable numbers, it was completely shown by numerical 
demonstrations in the book A Tract for friends to show amicability. This is a rare 
book, proof of the preeminence of its author and his distinction in mathematics". 

We have edited al-Flirisfs text and we shall refer in future to the page numbers 
of our edition, Rashed (1982b). 

41. Heath (1956, 2, p. 403) writes: "In other words, a number can be resolved into 
prime factors in only one way". 
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He took up the same idea in (1921), I, "From Thales to Euclid", p. 401 and (1931), 
p. 241. 

42. Ibn al-Haytham, Fi /Jail shukuk Uqlfdis fi al-U~ul, Istanbul, MS 800. He wrote 
(f. 139V

) on IX-14 and XI-15: "There is no doubt about either of them nor a 
difference of demonstration. Their reason is the figures whose correctness we have 
shown". 

43. Itard (1961, p. 68) wrote: "In the Elements we must look neither for commutativity 
or associativity of a product of several factors, nor composition of a number into a 
product of prime factors, nor a search for all divisors". He then wonders whether 
one can assumes that they were unknown to Euclid and writes: "This would be to 
misunderstand the character of a treatise like the Elements where the essential 
mathematical facts for all future research are generally established in a logical but 
rather tortuous way, but where no attempts are made to exhaust the subject and where 
its applications are carefully avoided". 

The position adopted since 1938 by Hardy and Wright (1965, p. 182) should be 
noted: "It might seem strange at first that Euclid, having gone so far, could not 
prove the fundamental theorem itself; but this view would rest on a misconception. 
Euclid had no formal calculus of multiplication and exponentiation, and it would have 
been most difficult for him even to state the theorem. He had not even a term for 
the product of more than three factors. The omission of the fundamental theorem 
is in no way casual or accidental; Euclid knew very well that the theory of numbers 
turned upon his algorithm, and drew from it all the return he could". 

44. Bourbaki (1960, p. 110 and p. III note). Bourbaki added: "To support this 
hypothesis, we may also remark that the proof of the theorem of perfect numbers 
is, in fact, basically no more than a particular case of a theorem of unique decom­
position into prime factors. Moreover, all the evidence concurs to prove that, from 
his time, the decomposition of a number into prime factors was known and commonly 
used, but no complete proof of the theorem of decomposition has been found before 
that given by Gauss at the beginning of his Disquisitiones". 

45. Mullin (1965, pp. 218-222). Hendy (1975, pp. 189-191 and lastly, the thoughtful 
reconsideration of this problem by Knorr (1976, pp. 353-368). 

46. See how he applies this rule, par. 15. Note moreover when examining the decom­
position of any number and applying Eratosthenes' sieve, al-FarisI gives other 
propositions. For instance, after recalling the decimal expression of integer N 

N = an IOn + ... + allO + ao, 

he affirms, e.g. 
as N '" ao (mod. 10) then N is odd when ao is odd. 
similarly, N is divisible by 5 if ao = 0 or ao = 5. 
Like so many others these propositions aim at determining whether the number 

is prime or not by examining its last figure (or figures). 
47. Descartes (ed., 1966, X, pp. 300-302). In his Excerpta Mathematica, IV, De partibus 

Aliquotis Numerorum, Descartes gives several of the above propositions without proof. 
For instance, he states Corollary 8 as follows: 

"Numerus autem primus, saepius per seipsum multiplicatus, sicuti an, partes 
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aliquotas habet a" -11 . Hoc est: seipsum minus I, divisum sua radice 
a-

minus 1" (p. 301). 

He proceeds and states Proposition 7 in these terms 

"Si reperire velimus partes aliquotas numeri cujusdam primi, per alium 
numerum multiplicati, cujus jam habemus partes aliquotas, veluti si partes 
aliquotae numeri a sint b, & x sit numerus primus, partes aliquotae numeri 
(ax) sunt bx + a + b", op. cit. 

He states Proposition 9 in the same way: 

"Si habemus duos numeros primos inter se, eorumque partes aliquotas, 
habemus etiam partes aliquotas producti ipsorum: veluti, si unus sit a ejusque 
partes aliquotae sint b, alter vero sit e, cujus partes aliquotae sint d, partes 
aliquotae ae erunt ad + be + bd", op. cit. 

48. To "find how many divisors a number has" Deidier (1739, p. 311) wrote: "If the 
simple divisors of the number are all unequal, we must disregard the unit and then 
examine how other simple divisors may produce different products taken in pairs, 
in triplets, in quaduplets, etc., after which add to the number found that of simple 
divisors including the unit; and the total sum will be the number of different divisors 
which the proposed number may have". 

Note that Deidier (1739, p. 330) states al-FarisI's proposition for divisors, i.e. 
ten). He does not prove it, but verifies it with a numerical example. The calcula­
tion of the sum (t(n) = 2"), in this case is not stated in a general way but is nevertheless 
verified by the example n = 30030. 

49. Rashed (1986, par. 28). Several centuries later, Montmort (1713, p. 55) stated the 
same rule as follows: "Let it be assumed that we want to find the number of divisors 
of the literal quantity a5b3eede, by counting the unit as divisor, we will find according 
to the ordinary rule, which is to multiply the exponents by each other where each 
one increased by the unit, that this number is 288 ...... 

50. Pascal (ed., 1963, pp. 54-55). Remember that the Traite du Triangle arithmetique 
dates back to 1645. However, some of Fr6nicle's investigations in the Abrege were 
known to Mersenne, therefore before 1648 when the latter died. One of his investi­
gations deals with figurative numbers relating to combinatorial analysis; see Coumet 
(1968, pp. 328-330). 

On Ren6-Franlr0is de Sluse, see Dickson (1919, II, p. 9). These results are to 
be found in other 17th century mathematicians; e.g. Wallis (1685, pp. 485-486). 

51. Nicomachus' Introduction translated by Thiibit ibn Qurra (ed., 1958, p. 77). Note that 
the table in the Greek edition has a supplementary column whose elements are suc­
cessively (55, 100, 145, 190,235). See Nicomachus (1866), p. 97. 

Note also, that this table or one of its variations, is to be found in most elementary 
treatises on arithmetic. 

52. See Suter's translation of Ibn al-Haytham's treatise (1912), pp. 296ff.). 
See also our edition and translation of the same text Rashed (1981, pp. 199ff.). 

53. Al-Qabi~i, op. cit., ff. 86'_87'. 
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54. AI-Baghdadi, op. cit., f. 65'. 
55. Ibid., ff. 64'-65V • 

56. The presentation and study of the progressions these lines and columns may 
represent. 

57. RaJc al-/;Iijab Can wujuh carnal al-/;Iisab, Biblioth~que Nationale, Tunis, MS 9722, 
ff. 1-45. We are indebted to M. Souissi for a copy of this manuscript. On the life 
and work of Ibn al-Banna', see Souissi's introduction to his edition of Talkhi~ Carnal 
al-/;Iisab (1969, Arabic text, pp. 15ff. and French text, pp. 17ff.). 

58. Ibn al-Banna', op. cit., f. 15v • 

59. Ibid. 
60. Ibid. 
61. Ibid., f. 16'. 
62. Ibid. 
63. Ibid., f. 16v • "Set the numbers which we multiply with each other, where each one 

exceeds the other by a unit, where the highest is the number (of terms) of the 
expression [p) and whose number is the number of combinations [k). Next set and 
numbers by which we are going to divide them, and where each one exceeds the other 
by a unit, and such that the highest among them is the number of given combina­
tions [k) and begins with the unit, two ( ... ). Let us then eliminate the numbers 
common to the prime numbers and the second numbers; when we do that, all the 
numbers by which we have divided are always eliminated; we multiply the remaining 
prime numbers by each other; we obtain the number of combinations (of elements) 
of this expression". 

64. Boyer (1950, pp. 387-390). Cf. Letter 4 November, 1636 to Roberval, where Fermat 
presented this proposition not as a combinatorial but as arithmetic. He wrote 
(Mersenne, VI, pp. 146-147): "Here is nevertheless a beautiful proposition which 
might be of some use to you. At least, if was by this means that I succeeded. It is 
a rule I found to give the sum, not only of triangles, which is what Bachet and 
others did, but also of pyramids, triangulo-triangulorum, etc. to infinity. Here is 
the proposition: 

Ultimum latus in latus proxime majus facit duplum trianguli. 
U1timum latus in triangulum lateris proxime majoris facit triplum 

pyramidis. 
Ultimum latus in pyrarnidem lateris proxime majoris facit quadruplum 

triangulotrianguli. 
Et eo in infinitum progressu." 

65. We can in fact show that the diffusion of knowledge of the arithmetical triangle in 
Arabic mathematics was uninterrupted from the late 1 Oth century until the 17th 
century. 

66. AI-Samaw'al (ed., 1972), see the photographic reproduction of the triangle. 
67 Ibn al-Banna', op. cit., f. 16'. 
68. Ibid., f. 16'. 
69. Bachet de Meziriac gave the following proposition in "Appendicis ad Librum de 

Numeris polygonis". Liber Secundus, prop. 17 (1621, p. 49): 

"Si numerus secetur in duas partes, tum in tres, tum in quatuor, tum in 
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quinque, & sic deinceps, & quaelibet pars unius sectionis comparetur, cuilibet 
ex aliis partibus eiusdem sectionis, continget hanc comparationem in prima 
sectione fieri semel, in secunda ter, in tertia sexies, in quarta decies, & sic 
continue per numeros triangulos ascendendo." see Diophanti Alexandrini 
Arithmeticorum, p. 49. 

For instance, after comparing triangular numbers and the combinations of n objects 
2 by 2, Bachet did not establish the general interpretation. 

70. Ibn al-Banna', op. cit., f. 17'. 
71. Strictly, al-FarisI did not forget F~. which he wrote down in a table beside the 

prime, second, etc. sums. 
72. Bernoulli (1713, p. 114). Bernoulli completed the table by adding F~ and Pl' It is 

interesting to compare the following commentary by Bernoulli (p. 113) with al-FarisI: 
"Hinc vero haud difficult colligimus, uniones omnium serierum rursus efficere seriem 
monadum, bibiones seriem lateralium, terniones trigonalium, caeterasque combina­
tiones majorum exponentium itidem constituere series aliorum figuratorum altioris 
generis, prorsus ut combinationes praecedd. Capitum, hoc solo cum discrimine, 
quod ibi series a cyphris, hic ab ipsis statim unitatibus incipiant". 

He them introduced his table. It had been given earlier but in a condensed form 
by Pascal (1963, p. 55) Also probably by Frenicle before him, see Coumet (1968, 
p. 331). It also appears in several treatises on arithmetic later on; cf., e.g. Deidier 
(1739, p. 322). 

73. Frenicle (1729, p. 54) speaks of "tnangular powers", Pascal (1963) speaks of 
"numerical orders" and Bernoulli (1713) of "Series of otherfigures of a high order", 
"series aliorum figuratorum altioris generis". 

74. Fermat (1896, I, p. 341) affirmed that it was his own discovery; he wrote: 
"Propositionem pulcherrimam et mirabilem, quam nos invenimus, hoc is loco sine 
demonstratione apponemus ... ". But, according to Charles Henry op. cit., IV, p. 234, 
the result had been given earlier by Briggs. 

75. Fermat also wrote here: "Cujus demonstrationem margini inserere nec vacat, nec 
licet"; op. cit., t. I, p. 341. 

76. According to Fermat, it concerns more than a "standard method" edition, which 
requires more space than the Bachet edition of the Arithmetic of Diophantus. These 
extremely brief indications, however, appear to be more suited to the arithmetical 
demonstration analogous to the one given here by combinatorial techniques. The latter 
makes it possible quickly to identify the binomial coefficients and the figurative 
numbers, thus. 

~-q+l = (~); 
from which follows 

F'!.=(P+Q-l) 
P q , 

and finally 

F'!.-l _ (p + Q - 1) ... (p +" 1) _ (p + q - 1) ... p - F'!. 
P p+l - P (q _ I)! - q q! - P p' 
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Otherwise at greater length, and moreover with greater difficulty, would be an 
arithmetical demonstration similar to that which we have shown here. We first 
prove the following lemma: 

LEMMA. F'!.+p = f F~F~. 
i.j=O 
i+j=q 

For q = 1, the previous relation is verified immediately. For q = 2, it follows 

F~+p = I + 2 + ... + n + (n + 1) + ... + (n + p) 
2 

= F~ + F~F~ + F~ = L F~F~. 
i,j=O 
i+j=2 

Let us suppose that the previous relation is true for q, and consider 

according to the definition of figurative numbers, It follows, by the hypotheses of 
recurrence 

F'!.:~ = F%+l + f F~F{ + f F~F~ + , .. + f F~Fb. 
i.j=O i.j=O i,j=O 
i+j=q i+j=q i+j=q 

From 

F'!.:~ = F'!.+l + F~ f F~ + , , , + F~ i F~; 
k=l k=l 

and, after definition of figurative numbers 

but 

therefore 

q+l 

L 
i,j=O 

i+j=q+ 1 

PROPOSITION. qF~ = p~-,\, 
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With the aid of the lemma, we can write 

~-;.\ = Fr' + Fr2Fl + ... + Frp-'F~ + ... + Fr-', 
~-;.\ = Fj:: + Fj:;F~ + ... + Fj:r-'F~ + ... + Fr', 

~-;.\ = Ff-' + Ff-2F~ + ... + Ff-P-'P" + ... + Fr'; 

in the addition column by column each sum is equal to F~. 
In effect 

Fj:r'F~+, = FC:;-'F!+" 

according to the definition of figurate numbers Fj. We have therefore 

Finally we obtain 

p~-;.', = qFj. 
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Directly based on the definition of figurate numbers and the preceding lemma, 
the style of this proof may resemble the one Fermat was thinking of when he made 
this remark, i.e. around 1638, according to the latest date given for letter xn. 

77. A reading of a1-FWisi's treatise on algebra, i.e. his commentary on Ibn a1-Khawwam's 
al-Bahii.'ia, denotes a certain familiarity with combinatorial methods. For instance, 
when for algebraic needs he raises the square of a polynomial, he proves that the 
number of arrangements with repetition of the n terms taken in pairs is n2• Cf. the 
chapter on the extraction of roots. 



5. IBN AL-HAYTHAM AND PERFECT NUMBERS 

Two earlier studies (Rashed, 1982b, pp. 209-278; supra, pp. 275-319) 
on the history of number theory in Arabic mathematics showed how, 
starting in the ninth century with Thabit ibn Qurra, a vast body of research 
centered on abundant, deficient, perfect, amicable and equivalent numbers 
was constructed. At first glance, within this body perfect numbers appear 
to have been neglected; compared with amicable numbers, writings on 
perfect numbers that have survived are fewer and less significant (Rashed, 
1982b, pp. 209-278; supra, pp. 275-319). 

Contrary to this impression, however, we conjectured that research 
on perfect numbers must have been more substantial than documents 
at our disposal lead us to believe and, furthermore, that before the twelfth 
century attempts were made to prove the reciprocal of Euclid's theorem. 
Two groups of facts corroborate our conjecture: the results obtained by 
the mathematician aI-BaghdadI (d. 1037) (Rashed, 1984, pp. 263, 
267-268) and the echo transmitted by a twelfth-century mathematician, 
al-ZanjanI, whose arithmetical work remains relatively unstudied despite 
his significance. 

AI-BaghdadI's results attest that contemporary mathematicians had 
overtaken Euclid and Nicomachus in their understanding of perfect 
numbers. As for al-ZanjanI's testimony, it suggests that attempts had been 
made to characterize these numbers. But which mathematician capable 
of conceiving such a characterization pioneered research in this field? 
Several candidates from the tenth-eleventh centuries stand out about 
whom we possess little information. We only need to take the example 
of al-An~akI who pursued his research in arithmetic, some fragments 
of which we have just identified,l indications of the path that lies ahead 
in order to perfect our knowledge of the history of number theory at 
that time. But despite our incomplete knowledge of the subject, it is 
thanks to Ibn al-Haytham that we shall validate our conjecture by showing 
that he not only characterized prime numbers by stating Wilson's theorem 
(supra, pp. 238-261), but also perfect numbers. Seven centuries before 
Euler, he stated and attempted to prove the reciprocal of Euclid's theorem 

320 
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in IX-36 on perfect numbers. Still more precisely, he states and proves 
the theorem that may be rewritten as follows: 

THEOREM. Let n be an even number, sen) the sum of the proper divisors 
of n. The following conditions are equivalent: 
(a) if n = 2P(2p +1 - 1) with (2P+ 1 - 1) prime, then sen) = n 
(b) if sen) = n, then n = 2P(2p+1 - 1), with (2P+1 - 1) prime. 

We know that (a) is IX-36 of the Elements. Ibn al-Haytham comments 
on Euclid's proposition on two occasions, and takes up its proof. In his 
Commentary on Euclid's Postulates he mentions the proposition in these 
terms: 

Euclid said next that the perfect number is equal to the sum of the parts that divide it. 
This is the definition of the perfect number. There exists a number that verifies this 
property. Euclid has in fact shown at the end of Book Nine how to find the numbers 
that verify this property. 2 

In a second book, On the solution of doubts concerning Euclid,3 Ibn 
al-Haytham goes into more detail about this proposition which he proves 
again. This time he asks the "cause" (al-Cilla) why only n has proper 
divisors. 

{I, 2, ... , 2P, (2P+1 - 1), 2(2p +1 - 1), ... , 2P- 1(2p +1 - I)}. 

He retains as the "first cause" the fact "that the sum of parts that are 
evenways even is an odd number". 4 It was in fact this property that Ibn 
al-Haytham developed to show that there exists no number that divides 
n other than those noted above. 

But Ibn al-Haytham's real contribution is expounded elsewhere. To 
my knowledge, no one before him had stated the theorem, nor attempted 
to propose a proof. One of the examples Ibn al-Haytham chose in his 
treatise on Analysis and Synthesis was that of perfect numbers. He starts 
by recalling that Euclid only proceeded by synthesis and proposes to 
undertake analysis himself. Before commenting, let us present this 
paragraph of Ibn al-Haytham's treatise, established and translated else­
where:5 

" ... To find a perfect number: the perfect number is that which is equal 
to the sum of the parts that measure it. This problem was set forth by 
Euclid at the end of the arithmetical chapters of his work. He did not 
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propose his analysis and nothing in what he says shows how he found 
the perfect number by analysis. He only proposed its synthesis like the 
other problems included in his work. We shall show here how to find 
a perfect number by analysis before composing this analysis afterwards. 

0) The analytical path to this problem. We set that we have found 
the perfect number, for example, let it be the number AB and let the 
parts that measure it be the numbers C, D, E, G, H, I, L, M, N. Let AB 
be equal to the sum of the numbers C, D, E, G, H, I, L, M, N. We next 
examine the properties of numbers with parts. If we examine the 
properties of numbers with parts, we find that it was shown in propo­
sition 36 of Book 96 that if any number of numbers follow one another 
in the same ratio, and if we separate a number equal to the first from 
the second and the last, then the ratio of the remainder of the second 
to the first is equal to the ratio of the remainder of the last to the sum 
of all preceding numbers. It follows that, given successive proportional 
numbers that are in the double ratio, if we subtract from their second 
and last a number equal to the first, then the remainder of the second will 
be equal to the first and the remainder of the last equal to the sum of 
all preceding numbers. But for successive numbers which are in the 
double ratio, each one measures the greatest number and each one of 
them is part of the greatest number. It then follows that if the numbers 
AB, C, D, E, G, H, I, L, M, N are in double ratio and are successive, 
then each of the numbers C, D, E, G, H, I, L, M, N is a part of AB, 
and if we subtract from AB a number equal to N, the remainder of AB 
is equal to the sum of remaining numbers that are parts of AB. But all 
AB is equal to the sum of parts, therefore the number AB is not in 
double ratio with all the successive remaining numbers. 

(2) Similarly, among the properties of successive proportional 
numbers that are in double ratio starting with one, if we subtract one from 
each of them, each remainder will be equal to the sum of numbers that 
precedes it, since if we subtract from the second a number equal to the 
first, which is one; the remainder will be one. It follows that for the 
numbers C, D, E, G, H, I, L, M, N, if some are successive in the double 
ratio starting with AB, and if the last of (those) which is the smallest 
of them is the double of that preceding it minus one, then all numbers 
following AB are parts of AB, and AB will be their sum. 

* Let the numbers AB, C, D, E, G be successive in the double ratio, 
and let number G be smaller by one then the double of number H. 
Separate KB equal to G (from AB), then AK will be equal to the sum 
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of the numbers C, D, E, G, but G is smaller by one than the double of 
H, it is therefore equal to the sum of H, I, L, M, N, now KB is equal 
to G, and KB is equal to the sum of H, I, L, M, N. Therefore the whole 
of AB is equal to the sum of numbers C, D, E, G, H, I, L, M, N.* But 
the numbers H, I, L, M, N are successive numbers in the double ratio 
starting with the unit and N is the unit. But since C is half of AB, then 
C measures AB by the units of M, and D measures AB by the units of 
L, and E measures AB by the units of I, and so on for the remaining 
numbers. Therefore if the numbers C, D, E, G have the same number 
as the numbers H, I, L, M, then each of the numbers that follow AB 
measures AB by the units of one of the numbers that follows N, and 
each of the numbers that follow N measures AB by the units of one of 
the numbers that follows AB. Thus all the numbers are parts of AB, and 
no other number measures AB. If there are more numbers following AB 
than these following N, and if some numbers following AB measure 
AB by the units of the numbers that follow N, and if the remaining 
numbers following AB measure AB by the units of other numbers, then 
those other numbers are parts of AB. But AB has no other parts than 
the numbers C, D, E, G, H, I, M, N. Therefore the numbers following 
AB are not more numerous than the numbers following N. If the numbers 
that follow AB are less numerous than the numbers that follow N, then 
certain numbers following N measure AB by the units of the numbers that 
follow AB, and the remaining numbers that follow N measure AB by 
the unit of other numbers; these other numbers are therefore parts of 
AB. But AB has no parts other than the given numbers. The numbers 
that follow AB according to the double ratio are of the same number 
as those that follow N. Thus the numbers C, D, E, G are equal in number 
to the numbers H, I, L, M. 

Similarly, if the number G has a part or parts, this or these parts 
measure AB since G measures AB. This or these parts are a part or parts 
of AB, and none of them is one of the numbers C, D, E, G, H, I, L, M, 
because none of the numbers C, D, E, is a part of G since each one of 
them is greater than G, and none of the numbers H, I, L, M measures 
G, because if we add one to G, then the numbers H, I, L, M measure 
it, and none of the numbers H, I, L, M measures the number one added, 
because each of them is greater than one, therefore none of the numbers 
H, I, L, M measure the number G, therefore none of them is a part of 
the number G; therefore if the number G has a part or parts different 
from the unit, then this part or these parts are parts of AB and each of 
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them is other than the numbers C, D, E, G, H, /, L, M. But AB has no 
other parts than these numbers and the unit, therefore G is a prime 
number. 

Analysis has shown that between the number AB and the number G 
there exists successive numbers whose ratio is the double, that the number 
G among them is prime, and that the number G is smaller by one unit 
than the double of one of the successive proportional numbers starting 
with one whose ratio is double. This notion is possible, that is the 
existence of a number among successive numbers whose ratio is double 
and starting with one, and such that if we take away one we have a prime 
number. 

(3) The synthesis of this problem will be made according to the 
following description. We consider evenways even numbers by induc­
tion, that is those numbers that are in double ratio starting with one. 
We subtract one from each of them, the one that will be prime, we double 
it as many times until the number of numbers doubled in this way is equal 
to the number of successive proportional numbers that precede this 
number counting the unit which is their first number. The greatest number 
obtained by doubling is a perfect number. 

EXAMPLE: The numbers A, B, C, D, E, GH are successive numbers 
whose ratio is double. Among them A is equal to one, and if we subtract 
one from GH, the remainder will be a prime number. Subtract from GH 
the number on which is SH, there remains GS a prime number; we double 
GS until the number of doublings is equal to the number of numbers 
A, B, C, D, E. Given the number GS, /, K, L, NO. I say that NO is a 
perfect number. 

Proof' Separate OP equal to GS; NP is therefore equal to the sum 
of numbers L, K, /, GS; but the number PO will therefore be equal to 
the sum of numbers E, D, C, B, A; the number NO will therefore be equal 
to the sum of the numbers A, B, C, D, E, GS, /, K, L. But the numbers 
L, K, /, GS measure NO by the units of one of the numbers E, D, C, 
B, and each of the numbers B, C, D, E, measures NO by the units of 
one of the numbers GS, /, K, L. All the numbers B, C, D, E, GS, /, K, 
L are parts of NO, but we showed that NO is equal to the sum of these 
numbers (plus A which is equal to one). It remains to be proved that 
no number other than these numbers measures NO. Let the number M 
measure NO; I say that M is one of the numbers B, C, D, E, GS, /, K, 
L. Let the number M measure NO by the units of number Q. If we then 
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multiply it by Q, we have NO; but the number GS measures NO by the 
units of the number E; therefore if we multiply GS by E, we have NO, 
the product of E by GS is therefore equal to the product of M by Q. 
The ratio of GS to G is therefore equal to the ratio of M to E. Either 
GS measures Q, or not. If GS measures Q, then M measures E; but the 
numbers A, B, C, D, E are successive from the unit and proportional; 
the number that follows the units is a prime number, since it is two; 
therefore no number measures the greatest of one of them, as was shown 
in proposition 13 of Book 9; the number M is therefore one of the 
numbers B, C, D, E. If the number GS does not measure Q, then they 
are co-prime as was shown in proposition 31 of Book 7; if they are 
co-prime, then they are the two smallest numbers according to their ratio, 
as it was shown in proposition 22 of Book 7 and if the two numbers 
GS and Q are the two smallest numbers according to their ratio, then 
they measure the numbers which are in their ratio, as was shown in 
proposition 20 of Book 7. Therefore if the number GS does not measure 
Q, they are the two smallest numbers according to their ratio, and they 
measure the numbers which are in their ratio. But the ratio of GS to Q 
is equal to the ratio of M to E. Therefore the number Q measures E; 
therefore the number Q is one of the numbers [A], B, C, D. Therefore 
the number Q measures NO by the number of the units of one of the 
numbers GS, I, K, L. But Q measures NO by the number of the units 
of M, the number M is therefore one of the numbers GS, I, K, L. 

Any number that measures NO is one of the numbers B, C, D, E, 
GS, I, K, L. And no number other than the numbers B, C, D, E, GS, I, 
K, L and A which is the unit measures NO. But the number NO is equal 
to the sum of these numbers; therefore the number NO is a perfect 
number". 

An examination of the above text leaves no room for ambiguity as to 
Ibn al-Haytham's intentions: he wants to prove that any perfect number 
is of the Euclidean form. As can be seen, his exposition is not exempt 
from obscurities, ascribable not only to the author but also to the 
manuscript tradition of his treatise; for example, in order to find the 
coherence of his approach, one paragraph has to be transferred.8 Now 
let us consider the various stages of Ibn al-Haytham's proof as carried 
out in this text. 

Firstly, Ibn al-Haytham shows that, for n any even perfect number 

s(2P) = 1 + 2 + ... + 2P- 1 = 2P - 1, (1) 
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whence 

n = s(n) y/: 2P• (2) 

He proves (2) by reductio ad absurdum: if n = 2P, then n - 1 = 
1 + 2 + ... + 2P- 1; and, according to (1), we obtain n = n - 1. Next 
he shows that if n = 2Pg with g = 2q+1 - 1, then 

n - g = g + 2g + ... + 2P- 1g (3) 

and 

g = 1 + 2 + . . . + 2q; 

for n perfect we obtain 

s(n) = n = (2P- 1g + ... + 2g + g) + (2q + ... + 2 + 1). (4) 

Name the two sets of divisors Dl and Dz respectively 

{2P- 1g, ... , 2g, g} and {2q, ••• , 2, I}; 

Ibn al-Hilytham then shows that 

q =p. (5) 

He also reasons by reductio ad absurdum: to any d1 E Dl must corre­
spond dz E Dz and inversely. Therefore if one supposes q < p or q > p 
one arrives at a contradiction with one of the above conditions; hence 
the results. 

Finally, he shows 

g is prime. (6) 

Suppose that g is not prime, then there exists dig, d y/: 1. But din, 
then dEDI U Dz. Thus d < g, therefore dEDI; on the other hand, 
d y/: 2k, therefore d E Dz; since the terms of Dz are the divisors of 
2q+1 = g + 1; if follows that d = 1. So it is obvious that Ibn al-Haytham 
only gives in fact a partial reciprocal of Euclid's theorem. He does not 
show that of all the even numbers only the Euclidean even numbers 
are perfect; but only that among the even numbers of the form 2P(2Q+1 

- 1) only those of Euclid are perfect. 
Ibn al-Haytham then proceeds to the synthesis. He takes a number 

n = 2Pg 
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with g a prime number such that 

we have 

Every number of Dl or D2 (for q = p) is truly a divisor of n. Suppose 
d is a divisor of n, then there exists e a divisor of n such that 

d'e = n = 2Pg; 

we have 

elg = 2Pld. 

If g divides e, then d divides 2P and- d E D2• If g does not divide 
e, (g, e) = 1 because g is prime; then e divides 2P, and e = 2k (1 ~ k 
~ p); therefore d = g2P- k, dEDI' Any divisor of n appears in Dl or 
D2• We conclude that n is equal to the sum of its divisors; therefore n 
is perfect. 

But this partial failure should not eclipse the essential: a deliberate 
attempt to characterize the set of perfect numbers. Now this approach 
is not only dated but also "localized": it is the offspring of the Arabic 
Euclidean tradition of number theory. A successor to Thrtbit ibn Qurra, 
like him Ibn al-Haytham took the arithmetical books of the Elements 
as a model. They were much more intent on establishing and proving 
certain properties of integers or classes of integers than on calculating 
particular numbers. Neither of them, let us emphasize again, wanted to 
extend his investigations to the calculation of numbers unknown to the 
Ancients, whether it concerns perfect or amicable numbers. Their lack 
of interest is even more obvious in Ibn al-Haytham's study of perfect 
numbers, in so far as it was given as an example in a treatise on analysis 
and synthesis for the entire body of mathematical disciplines with a 
propaedeutic and methodological bent. 

One therefore expects to encounter this calculation in research by 
mathematicians who opted, either completely or partially, for the neo­
Pythagorean style, in other words in the tradition of Nicomachus of 
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Gerasa's Introductio Arithmetica. The manuscripts at our disposal confirm 
this interpretation and authorize us, moreover, to surmise that this 
calculation was carried out quite early; we would not be surprised to find 
the calculation of new perfect numbers in writings dating back to the 
tenth-eleventh centuries, even though at the present time they are only 
to be found from the thirteenth century onwards in the writings of Arab 
N eo-Pythagoreans. 

We shall now briefly consider the work of Ibn Fallus (d. ca 1240), 
recently examined for the same reason (Brentjes, 1987, pp. 21-30) and 
also another much later scientist Ibn aI-Malik al-Dimashq'i. By this 
choice, we want to circumscribe the period before covering it by sys­
tematic analysis. 

Ibn FallUs' work is only a summarized commentary on Nicomachus' 
book and he did in fact state that it was "based on Nicomachus' book". 9 

He starts by giving the Euclidean rule for the formation of perfect 
numbers, before writing down the following numbers in a table lO -

notwithstanding some mistakes made by the copyist: 

6,28,496,8128,130816,2096128,33550336,8589869056, 
137438691328, 35184367894528. 

But Ibn Fallus' texts call for several remarks. Like the Neo­
Pythagorean tradition, he does not prove but proceeds by incomplete 
induction and states rules. Furthermore, one observes that the above 
list of terms given as perfect numbers also includes numbers that are 
not perfect. Lastly, one notes the presence of three new perfect numbers; 
the fifth, sixth and seventh whose discovery is usually dated back to 
the mid-fifteenth century for the first and to the late sixteenth for the 
last two. The introduction of numbers in the list of perfect numbers 
that are not perfect cannot be neglected either since Ibn Fallus never 
explicitly exposed his calculation, and in particular his calculation for 
checking that (2P - 1) is prime. The numbers are laid out in two rows 
in a table without comment. But before we clarify this point, let us 
draw a comparison with the explicit presentation by Ibn aI-Malik, himself 
heir to this chapter of number theory of his predecessors. In Book 7 of 
his treatise,1l after giving the rule of the formation of perfect numbers. 
Ibn aI-Malik presents a table incompletely reproduced here: 
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TABLE 

Divisible into two halves Non successive odd numbers 
[2P] [2P+1 -- 1] 

2 3 
4 7 
8 15 

16 31 
32 63 
64 127 

128 255 
256 511 
512 1023 

1024 2047 
2048 4095 
4096 8191 

329 

Successive perfect numbers 
[2P(2P+1 - 1)] 

6 
28 
o 

496 
o 

8,128 
o 

130,816 
o 

2,096,128 
o 

33,550,336 

Now, though Ibn aI-Malik stops at the fifth perfect number, he too 
combines numbers that are not perfect in his list. So this mistake, which 
is not peculiar to Ibn PalHis, is no longer a simple error of calculation. 
Moreover, in the eyes of someone, though slightly familiar with math­
ematical writings of the age, even if second-rate, it is inconceivable 
that those mathematicians were incapable of recognizing whether 511 
or 2047, for example, are prime or not. In our opinion, the reason 
for the error must be explained otherwise; it refers to Nicomachus' 
affirmation according to which there exists a perfect number in each 
decimal position. Refuted earlier by aI-BaghdadI in the early eleventh 
century (supra, pp. 281-282), nonetheless this opinion outlived criti­
cism as it may be found expressed by Ibn PalHis: "All these numbers (i.e. 
perfect numbers) have two necessary properties [laziman]; the first one 
is that there exists one in each of the ranks of calculation: one in the 
units, i.e. six, one in the tenths, i.e. 28, and so on for the other ranks: 
the second is that their smallest extremity is two successive numbers 
that are six and eight" .12 It was apparently from such affirmations 
that mathematicians were overhasty in drawing their conviction that 
(2P+ 1 - 1) is prime or not for p = 8, 10, 22, without undertaking the 
necessary proofs and without perceiving that they are in contradiction 
with their own calculations: there is no perfect number between 10 000 
and 100000. 
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In this way the history of number theory in Arabic mathematics, which 
we are attempting to constitute, is enriched with a chapter on perfect 
numbers. Theoretical research undertaken by Ibn al-Haytham, and by 
his contemporary ai-BaghdadI, including the calculation of new perfect 
numbers, is evidence that, in spite of errors these numbers were the object 
of active research. Historical studies of the future will not fail to enrich 
this chapter whose existence we have just established. But as of now, 
Ibn al-Haytham by his discovery of Wilson's theorem and his state­
ment of Euler's theorem, emerges as an important figure in the history 
of number theory. 

NOTES 

1. According to ancient bibliographers, in particular al-Nadlm, we know that 
al-AntakI (d. 376 H, i.e. 987) was a mathematician whose works deal mainly with 
arithmetic and number theory. Al-NadIm attributed a commentary on Nicomachus 
of Gerasa's Introductio Arithmetica to him and a commentary on Euclid's Elements. 
If only for his dates the importance of al-AntakI's works for the history of numbers 
is understable. But his works remain undiscovered. We were fortunate enough to 
come across a later work that reproduces long passages from his commentary on 
the Elements. An analysis of the quoted fragments that are the only available texts 
of this author, show that it was an important work, comparable to works by al-NayrlzI 
or his successor Ibn al-Haytham. In a later paper we shall re-examine these passages 
including the entire manuscript from which they are extracted (MS 992). For the 
present let us note that al-AntakI's interest in the study of prime numbers. He solved 
the following problem: to find two prime numbers a and b such that 

a - sea) = k, 

s(b) - b = k', 

and solves the case where 

k = k'. 

On the calculation of amicable numbers, if the author who consulted his text is to 
be believed, al-AntakI only gives the couple 220, 284; which indicates that, just 
like Thiibit ibn Qurra, he was much more interested in theoretical research than in 
calculating new couples. 

Apart from the passages by al-AntakI, the same manuscript contains fragments 
by al-NayrlzI, al-DimashqI, Ibn al-Haytham and also Ibn Hiid's book, Al-Istikmiil. 
Lastly, it gives us the calculation of the couple of amicable numbers 17296, 18416, 
named after Fermat which we found earlier in four different texts; which is proof 
that this couple was part of common knowledge of Arabic mathematicans from the 
late thirteenth century. 

2. Ibn al-Haytham, SharI; MU$iidariit Uqlrdis, Istanbul, MS Feyzullah 1359, f. 223'. 
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3. Ibn al-Haytham, Kitllb fi flail shukak kitllb Uqlfdis fi al-U~al, Istanbul, University 
Library, MS 800, ff. 140v - 142'. 

4. Ibid., f. 142'. 
5. The translation of the Arabic text is based on all the available manuscripts and is 

published in Rashed (1991b). 
6. 35 in the Heiberg edition. 
7. 21 in the Heiberg edition. 
8. This history is related in Rashed (1991b). Just note here that the paragraph marked 

by asterisks, should be inserted several lines before, i.e. before the sentence starting 
with "it follows that ...... This point corresponds, moreover, to a break in the text. 

9. Ibn Fallus, Kitlib iCdlid al-Isrlir fi Asrar al-Acdlld, MS Diir al-Kutub, 23317IB, ff. 
62' - 72'; cf. f. 62v. 

10. Ibid., f. 70v. 
11. Ibn ai-Malik al-DimashqI, Al-Iscllf al-Atamm bi-lfisllb al-Qalam, Cairo, Riyii4iyyiU, 

MS Diir al-Kutub, 182, f. 279. 
12. Ibn Fallus, op. cit., f. 65v. 
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THE NOTION OF WESTERN SCIENCE: 

"SCIENCE AS A WESTERN PHENOMENON" 

Classical science is European and its origins are directly traceable to 
Greek philosophy and science. This tenet - for once an exception in 
the history of philosophy and science - has nevertheless survived intact 
despite numerous conflicting interpretations over the last two centuries. 
Almost without exception, philosophers accepted it as a postulate to 
characterize Classical Rationalism. Not only Kant but Comte, neo­
Kantians as well as Neo-Positivists, Hegel as well as Husserl, Hegelians 
and phenomenologists as well as Marxists, acknowledged this postu­
late as the basis for their interpretations of Classical Modernity. The 
names of Bacon, Descartes and Galileo (the first name sometimes omitted 
and, depending on the circumstances, a number of others added) are 
still cited today as so many stages for the resumption of an advance 
interrupted by centuries of decadence, and as so many milestones along 
the path of a revolutionary return to Greek science and philosophy. The 
Platonic and Archimedian metaphors used by a Brunschvicg or a Koyre 
to characterize the modes of the existence of classical science bear 
witness to the fact that this return was understood by all to be, at one 
and the same time, the search for a model and the rediscovery of an ideal. 
One might impute this unanimity of philosophers to their approach which 
transcends immediate historical data, their concern for radicality, and 
their efforts at grasping what Husser! described as "the original 
phenomenon (Urphiinomen) which characterizes Europe from the spir­
itual point of view"; and consequently, one might expect the stand 
taken by those directly in contact with the facts of the history of science 
to be entirely different. However, this is not the case: the same postu­
late is adopted by historians of science as a starting point for their work 
and especially their interpretations. In this respect, the difference between 
Poggendorff, Rosenberger, Diihring and Ger!and on the one hand, and 
Duhem on the other in the history of physics, and between Tannery, 
Cantor and Bourbaki in the history of mathematics are infinitesimal. 
Whether the advent of classical science is interpreted as the product of 
a break with the Middle Ages, or, on the contrary, the thesis of 
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continuity is defended, or, as is more frequently the case, an eclectic 
position is adopted, most historians agree in their almost implicit 
acceptance of this postulate. 

Nowadays, despite works by Woepcke, Suter, Wiedemann and Luckey 
etc. on the history of Arabic science, the recent Dictionary of Scientific 
Biography, and Needham's research on the history of Chinese science, 
current historical works are based on a fundamentally identical concept. 
Moreover, though the very concept of the history of science and its 
methods have recently become the object of controversy and criticism, 
internalists and externalists, continuists and discontinuists, sociologists 
of science and conceptual analysts tacitly agree to leave the above 
doctrine outside discussion and consequently unquestioned. The same 
representation is encountered time and again: classical science, both in 
its modernity and historicity, appears in the final count as the work of 
European humanity alone; furthermore, it is essentially the means by 
which this branch of mankind is defi~ed. In fact, only the scientific 
activities of European humanity are the objects of history. It is true that 
the existence of some scientific activity in other cultures is occasion­
ally acknowledged. Nevertheless, it remains outside history or only 
integrated in so far as it contributed to science, which is essentially 
European; such contributions are merely additional techniques which 
in no way modify the intellectual configuration or the spirit of the latter. 

The picture drawn of Arabic science is an excellent illustration of 
this approach: a museum of the Greek heritage, enriched by a few 
technical innovations or transmitted intact to the legitimate heirs of 
classical science. Without exception, scientific activity outside Europe, 
poorly integrated into the history of science, is the object of an anthro­
pology of science whose academic translation is nothing more than 
Orientalism. 

The consequences of this doctrine are not confined to the domain of 
science and its history and philosophy; its application in the nineteenth 
century is well-known. Similarly it is known to lie at the heart of a debate 
which bears the same name today as in the past: modernism vs tradi­
tion. In some Mediterranean and Asiatic countries in search of their 
identity today as was the case in eighteenth century Europe, science 
qualified as European is identified with modernism in the conflict that 
opposes the Ancients and the Moderns. When the historian of science 
questions the notion of Western science, he not only poses a problem 
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for his discipline, but may also contribute towards answering a question 
of his own time. Let it be said straight away: our objective here is not 
to redress wrongs, nor contrast an alleged Oriental science with a science 
qualified as European. We just want to understand what the European 
determination of the concept of classical science implies, grasp its reasons 
and assess the importance of the specification, geographical at the 
least and doubtless anthropological, of a phenomenon whose definition 
necessarily requires universality. 

To achieve this we shall therefore begin by sketching the present 
history of the notion of European science itself which, by all indica­
tions, stems from diverse and heterogeneous origins. Its subsequent 
confrontation including the doctrine it embodies with the facts of the 
history of science, will enable us to estimate its scope. For obvious 
reasons, we cannot claim to make an exhaustive study here, and even 
less, a definitive one. We shall limit ourselves to posing the problem 
and advancing several hypotheses with two restrictions however: the only 
non-European science under consideration here is the product of many 
cultures and of scholars of different beliefs and religions, all of whom 
wrote their science principally, if not exclusively, in Arabic; concerning 
the tenets of the history of science, those most cited are French histo­
nans. 

The concept of European science is to be found in the works of 
eighteenth-century historians and philosophers. It then fulfilled two 
distinct but not unrelated functions: a means to define modernity in a 
dogmatic debate that persisted throughout the eighteenth century and also 
a component part of a naive diachrony whose aims remained polemic and 
critical. In the debate between the Ancients and Moderns, engaged early, 
to define modernity scholars and philosophers referred to a science, which 
combines reasoning and experiment: the preface to Traite du vide (Pascal, 
ed., 1963, p. 231) and, to some extent, De la recherche de la verite 
(Malebranche, 1910, I, p. 139), are thus early seventeenth attempts at 
proving the superiority of the Moderns. Historical induction, or so-called 
historical induction, intended to provide this dogmatic debate with its 
concrete determination, thus rendering the superiority of the Moderns 
indisputable. This is also one of the reasons, and certainly not the least, 
why the history of science was introduced on the scene during the 
eighteenth century. But the West had already been identified with 



THE NOTION OF WESTERN SCIENCE 335 

Europe, and "Oriental wisdom" already contrasted with the natural 
philosophy of the post-Newtonian West, as in Montesquieu's Persian 
Letters (1721).1 

Besides its critical and polemic role in a continuous and rebounding 
debate, the notion of Western science then assumed a function in the 
elaboration of history as the diachrony of the human spirit. It also inter­
vened as a milestone in its own progressive movement, a movement 
regulated both by a cumulative order and a continuous elimination of 
its acquired errors. This is a brief outline of the representation given 
by a Fontenelle, a d' Alembert or a Condorcet. While the latter for 
example (like so many others subsequently), designated modernity by 
advancing the names of Bacon, Galileo and Descartes, he did so to 
name the transition from the "Eighth to the Ninth Epoch of the Historical 
Table" of humanity (Condorcet, 1966, p. 201) whose future merges with 
the indefinite becoming of the Age of Reason. Classical science is 
European and Western only insofar as it represents a stage in the con­
tinuous and normalized development of one and the same individuality: 
Humanity. For a Fontenelle, a d' Alembert or a Condorcet it would 
therefore be absurd to discover the origins of classical science in Greek 
science and philosophy alone: its qualification as European does not refer 
to any anthropology, but simply to a coincidence of empirical history and 
ideal history, the truth of the former. Of this conception Bossut's Discours 
preliminaire (1784, p. III) to the Encyclopedie methodique offers an 
illustration, admittedly limited, for the history of science. The initial 
postulate of the historical table of progress for the exact sciences divided 
into three periods which confuses conjectures, alleged facts and real facts, 
is that" ... all the eminent peoples of the ancient world appreciated 
and cultivated mathematics. The most renowned among them were the 
Chaldeans, the Egyptians, the Chinese, the Indians, the Greeks, the 
Romans, the Arabs, etc. in modern times, the Western nations of Europe." 
" ... The progress accomplished by the Western nations of Europe in 
the sciences from the sixteenth century to our times utterly effaces those 
of other peoples". 

While formulated in these terms in the eighteenth century, the notion 
of Western science changed in nature and scope at the tum of the nine­
teenth century. In short, with what Edgar Quinet called the "Oriental 
Renaissance,,2 (Le. Orientalism) in the last century, the anthropological 
dimension completed its conceptualization which had been lacking up 
to that point. This Oriental Renaissance led to the discredit of science 
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in the East, to which history-through-Ianguage added its alleged scien­
tific support. 

It is true that while the eighteenth-century concept still survived 
intermittently, notably among historians of astronomy, from the early 
nineteenth-century, the resources and ideas of Orientalism contributed 
most to the constitution· of the historical themes of the various philoso­
phies. In Germany as in France, philosophers of various tendencies staked 
themselves on Orientalism for diverse reasons to be sure, but in accor­
dance with an identical representation: the East and West oppose each 
other not as geographical but as historical positivities. This opposition 
is not confined to a period of history but refers so to speak to the 
essence of each term. In this respect, Hegel's Lectures on the Philosophy 
of History (1963, pp. 82ff.; 1954, pp. 19-21) and other works like Joseph 
de Maistre's Of the Pope (1884, pp. 487ff.) may be invoked. At the 
same time, with the French Restoration philosophers and later the par­
tisans of Saint-Simon, emerged the themes of the "Call of the Orient", 
the "Return to the Orient", which translated a reaction against science, 
and more generally, against Rationalism. But it was with the advent 
and growth of the German school of philology that the notion of science 
as a Western phenomenon was endowed with a "scientific" and no longer 
a purely philosophical basis, lacking until then. 

The importance of this school for historical disciplines in general is 
well known, though its exact influence on the history of science is less 
known. However, everything indicates that its influence was not only 
direct but also indirect with the extension of this school into the study 
of mythology and religion. In any case, from the outset the works of 
Friedrich von Schlegel and Bopp in particular, placed the historian in a 
novel situation. From henceforth, his object constituted an irreducible 
totality in relation to its mode of existence and the nature of its elements. 
His method now compelled him to compare analogous totalities through 
the structures and functions they fulfilled. For Schlegel in 1808, as for 
Max Muller later, the model of historicity is natural history, and in 
linguistics, comparative grammar played the role of comparative anatomy. 
This method then led Schlegel to distinguish between two classes of 
language: flexional Indo-European languages and the others. The former 
are "noble", the latter less perfect. Sanskrit, and consequently German, 
considered the closest to it, is " ... a systematic language and perfect 
from its conception"; it is " ... the language of a people composed not 
of brutes, but of limpid intelligence". 3 There is nothing surprising in 
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this statement; with the advent of the German school, we are already 
within the realm of the classification of mentalities. Neither von Schlegel, 
nor Bopp, nor Jacob Grimm later, would have disagreed with William 
von Humboldt when he saw language as the soul of a nation, its par­
ticular genius, its "Weltanschauung". 

From now on the scene is set for the transition from the history of 
language to history-through-Ianguage. 

Thanks to comparative philology and closely related to it, let us 
first note that the comparative study of religion and mythology was 
developed around the middle of the century by Alfred Kuhn and Max 
Muller in particular. The classification of mentalities was perfected. On 
the basis of these tenets and dating from this period one of the most 
important attempts to establish the notion of science as Western and 
European in a so-called scientific manner was elaborated. Already 
apparent in Christian Lassen's synthetic work, this objective came into 
its own, this time in France, in the work of Ernest Renan. 

Renan's avowed aim was to accomplish " ... for the Semitic languages 
what Bopp had accomplished for Indo-European languages".4 His task 
consisted of taking advantage of all the contemporary literature on 
comparative philology and mythology, in order to arrive at a so to speak 
eidetic description of the Semitic spirit and its manifestations in history. 
Now, for Renan like Lassen,5 civilization is only shared by Aryans and 
Semites; the historian then only needed to evaluate their respective 
contributions in a differential and comparative way. From henceforth 
the notion of race constituted the foundation of historiography. But by 
"race" is merely understood the set of " ... aptitudes and instincts 
recognizable solely through linguistics and the history of religion" 
(Renan, 1863, pp. 490-491). In the final analysis then, for reasons 
inherent in Semitic languages, the Semites unlike Indo-Europeans, did 
not and could not possess either philosophy or science. "The Semitic 
race", wrote Renan (1863, p. 16) "is distinguished almost exclusively 
by its negative features: it possesses neither mythology, nor epic poetry, 
nor science, nor philosophy, nor fiction, nor plastic arts, nor civil life". 
The Aryans, whatever their origin, define the West and Europe at one 
and the same time. In such a context Renan, who otherwise fought against 
miracles as a whole, nevertheless retained one: the "Greek Miracle."6 
As for Arabic science, it is, wrote Renan (1859, p. 89) " ... a reflec­
tion of Greece, combined with Persian and Indian influences": in short, 
Arabic Science is an Aryan reflection. 
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Historians of science not only borrowed their representation of the 
Western essence of science from this tradition, but also some of their 
methods for describing and commenting on the evolution of science. 
For instance, they applied themselves to discovering the concepts and 
methods of science, followed their genesis and transmission through 
philological analysis of the terms and on the basis of the documents 
at their disposal. Like the historian of mythology or religion, the 
historian of science must be a philologist as well. Representations and 
methods that provide an anthropological basis of this concept of science 
as a Western phenomenon are from henceforth available. This was, for 
example, the situation of a Tannery, a Duhem or a Milhaud in France, 
all of whom borrowed Renan's representation and often, his own 
terminology as well!? Even though a good number of historians had 
already abandoned this brand of anthropology, they nevertheless 
preserved and propagated a series of consequences it had engendered. 
These may be enumerated as follows: 

1. Just as science in the Orient left no consequential traces in Greek 
science, Arabic science left none of consequence in classical science. 
It both cases, the discontinuity was such that the present could no longer 
recognize itself in its abandoned past. 

2. Science after the Greeks was strictly dependent on them. According 
to Duhem (1965, p. 125), " ... Arabic science only reproduced the 
teachings received from Greek science". In general terms, Tannery (1887, 
p. 6) recalled that the more one examines the Hindu and Arabic scholars, 
" ... the more they appear dependent upon the Greeks ... (and) ... 
quite inferior to their predecessors in all respects". 

3. Whereas Western science, in its origins as well as in the era of 
classical modernity, paid particular attention to theoretical foundations, 
Oriental science, even in its Arabic period, is defined essentially by its 
practical aims: it contrasts with the former, just as the science of an 
artisan attempting to dominate the rules of his art is contrasted with 
the knowledge of a philosopher-turned-scholar. 

4. The hallmark of Western science in its Greek origins as well as 
in its modern renaissance, is its conformity to rigorous standards; in 
contrast, Oriental science in general, and Arabic science in particular, 
allows itself be carried away by empirical rules, calculatory methods, 
without checking the validity of each step as it proceeds. The case of 
Diophantus illustrates this idea perfectly: as a mathematician, wrote 
Tannery (1887, p. 5), " ... Diophantus is hardly Greek". But when he 
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compared Diophantus' Arithmetica with Arabic algebra, he (1887) wrote 
that the latter ". . . in no way superseded the level attained by 
Diophantus" . 

5. The introduction of experimental norms which, according to his­
torians, totally distinguishes Hellenistic science from classical science, 
is the achievement of Western science alone (Milhaud, 1893, p. 301). 

So it is to Western science alone that we owe both the concept of 
science and the method of experimentation. 

This concept of Western science, elaborated in the eighteenth century 
as an element of simple diachrony, was based on anthropology. If their 
origins were sometimes overlooked, these consequences still remained 
in force in the works of philosophers and historians, and particularly 
in works relating to classical science. We shall not oppose this ideology 
with another. We simply propose to confront some of these elements with 
the facts of the history of science, starting with algebra and concluding 
with the crucial problem of the relationship between mathematics and 
experimentation. 

Neither algebra, nor other Arabic sciences, escapes the above charac­
terization: practical aims, a calculatory appearance, an absence of rigour. 
It was precisely this that enabled Tannery to write that Arabic algebra 
had not attained the level of Diophantus. And, even more recently, this 
representation apparently authorized Bourbaki to exclude the Arabic 
period when he retraced the evolution of algebra. It goes without saying 
that we shall not engage in the discussion of contentious and - in our 
opinion - erroneous theses here, such as the existence of an algebraic 
theory in Diophantus' Arithmetica, or the existence of a geometric 
algebra, recognized as such, among the Greeks. We shall therefore 
confine our study to the problem of the Western nature of classical 
algebra. Has it not frequently been affirmed since Condorcet and 
Montucla up to Bourbaki, by way of Nesselman, Zeuthen, Tannery and 
Klein (to cite only a few names), that classical algebra is the work of 
the Italian School, perfected by Viete and Descartes? Did not Milhaud 
(1921) in the past, and Dieudonne (1974, I) more recently, trace the early 
history of algebraic geometry back to Descartes? The modern mathe­
matician's text is, in this respect, significant: between the Greek 
prehistory of algebraic geometry and Descartes, Dieudonne finds only 
a void, which far from being frightening, is ideologically reassuring. 
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Despite the exemplary cases of Bourbaki and Dieudonne, some histo­
rians do occasionally cite al-KhwarizmI, his definition of algebra and 
solution of the quadratic equation, but usually to reduce Arabic algebra 
to its initiator. However, this restriction is serious and wrongs the history 
of algebra which is not a simple extension of al-KhwarizmI's algebra, 
but principally an attempt to surpass his achievements both theoreti­
cally and technically. Moreover, this attempt is not the result of the 
sum of individual works, but so to speak the outcome of genuine 
traditions active at that time. The first tradition conceived the precise 
objective of arithmetizing algebra inherited from al-KhwarizmI and his 
immediate successors. The second which overcame the obstacle of the 
solution by radicals of third and fourth-degree equations had, in its initial 
stage, formulated a geometric theory of equations before changing its 
viewpoint and studying known curves by means of their equations. In 
other words, this tradition engaged itself explicitly in the first research 
on algebraic geometry. Given these conditions, the traditional pattern 
of the history of algebra could only be a historical myth; its proof is 
furnished by recalling certain facts. 

As we said, the first tradition set out to arithmetize inherited algebra. 
This theoretical programme was inaugurated at the end of the tenth 
century by al-KarajI, and was summarized by one of his successors, 
al-SamawJal (d. 1174) as follows: "To operate on unknowns as the 
arithmeticians work on known quantities". 

The orientation is clear and its execution was organized into two 
complementary stages: on the one hand, a systematic application of 
elementary arithmetic operations to algebraic expressions; on the other 
hand, algebraic expressions are considered independently from what they 
may represent so as to be able to apply them to operations hitherto 
restricted to numbers. Nevertheless, as we know, a programme is not 
defined by its theoretical aims alone, but also by the technical difficul­
ties it must confront and resolve; one of the most important was the 
extension of abstract algebraic calculus. At this stage mathematicians 
in the eleventh and twelfth centuries had achieved some results which 
are unjustly and persistently attributed to mathematicians in the fif­
teenth and sixteenth centuries. Among those results may be cited: the 
extension of the idea of an algebraic power to its inverse after clearly 
defining the power of zero, the rule of signs in all generality, the binomial 
formula and the tables of coefficients, the algebra of polynomials, and 
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above all, the algorithm of divisibility, and the approximation of whole 
fractions by elements of the algebra of polynomials.8 

Subsequently, algebraists intended to apply this same extension of 
algebraic calculation to irrational algebraic expressions. The question 
al-KarajI asked was: "How to operate on irrational quantities using 
multiplication, division, addition, subtraction and extraction of roots?" 
In response to his question the mathematician gave, for the first time, 
apart from mathematical results, an algebraic interpretation of the theory 
contained in Book X of the Elements; now Pappus considered this book, 
as did a much later mathematician as important as Ibn al-Haytham, as 
a work on geometry owing to the basic traditional separation - in 
Aristotle as well as Euclid - between continuous and discontinuous 
magnitudes. With al-KarajI's school then a greater understanding of the 
structure of real algebraic numbers was achieved. 

In addition, the works of this algebraic tradition paved the way for 
new research on number theory and numerical analysis (supra, pp. 
85-146). An examination of numerical analysis, for example, reveals that 
after renewing algebra through arithmetic, mathematicians in the eleventh 
and twelfth centuries also effected a return movement to arithmetic to 
discover the applied extension of new algebra in some of its chapters. 
It is true that arithmeticians before the eleventh century and algebraists 
in the twelfth century extracted square and cubic roots and possessed 
formulas of approximation for the same powers. But for lack of abstract 
algebraic calculus, they were unable to generalize either their results, 
methods or algorithms. With the new algebra, the generality of alge­
braic calculus became a constituent part of numerical analysis which, 
until then, had only been a sum of procedures, if not prescriptions. It was 
in the course of this double movement between algebra and arithmetic 
that mathematicians of the eleventh and twelfth centuries achieved results 
still incorrectly attributed to mathematicians of the fifteenth and sixteenth 
centuries. For instance, the method attributed to Viete for the resolu­
tion of numerical equations, the method ascribed to Ruffini-Horner, 
general methods of approximation, in particular the one Whiteside 
designated as the al-KashI-Newton method, and lastly, the theory of 
decimal fractions. In addition to methods which were to be reiterative 
and capable of leading in a recursive way to approximations, eleventh 
and twelfth-century mathematicians also formulated new procedures of 
demonstration such as mathematical induction as it will still be found 
in the seventeenth century. Similarly, they engaged in new logico-
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philosophical debates: for example, the classification of algebraic propo­
sitions and the status of algebra in relation to geometry. It was their 
successors who were to tackle the problem of symbolism. 

All of this is to say that certain concepts, methods and results attrib­
uted to Chuquet, Stifel, Faulhaber, Scheubel, Viete, Stevin, etc. were 
actually the work of this tradition of al-KarajI's school, known further­
more to Latin and Hebrew mathematicians. 

We have just seen that one of the concepts elaborated by algebraist­
arithmeticians at the end of the tenth century was that of polynomials. 
This algebraic tradition - the "arithmetic of unknowns" according to con­
temporary terminology -, paved the way for another algebraic tradition 
initiated by al-Khayyam (eleventh century) and renewed at the end ofthe 
twelfth century by Sharaf aI-DIn al-TusT. While the former formulated 
a geometric theory of equations for the first time, the latter left his 
decisive mark on the beginnings of algebraic geometry. 

It is true that, unlike Alexandrian mathematicians, al-Khayyam's 
immediate predecessors such as al-BIrunI, al-MrthrtnI, and Abu aI-IUd, 
had already reduced problems of solids to third-degree equations, 
precisely through the concept of the polynomial. But it was with al­
Khayyam (Woepcke, 1851) that these hitherto inconceivable questions 
were posed for the first time: can problems of straight lines, planes and 
solids be reduced to equations of corresponding degree on the one hand, 
and on the other, can the set of third-degree equations be re-aranged to 
seek, in the absence of a solution by radicals, solutions governed by 
means of the intersection of auxiliary curves? In answer to these 
perfectly delineated questions, al-Khayyam was led to formulate the 
geometric theory of third and lower degree equations. His successor, 
al-TusI, was soon to change his point of view: far from adhering to 
geometric figures, he thought henceforth in terms of functional rela­
tions and studied curves by means of equations. Even if al-TusI (supra, 
pp. 147-204) still solved equations by auxiliary curves for each case, 
nevertheless, the intersection of curves was proved algebraically by 
means of their equations. This is of capital importance, since the sys­
tematic usage of these proofs introduced the practice of instruments 
already available to tenth century mathematical analysts, so to speak: 
affine transformations, the study of the maxima of algebraic expres­
sions, and with the aid of what was latter to be recognized as the 
derivative, the study of the upper and lower boundary of roots. It was 
in the course of these studies and the application of these methods that 
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al-liist grasped the importance of the discriminant of the cubic equation 
and gave locally the so-called Cardano formula just as it was found in 
the Ars Magna. Finally, without further developing the results obtained, 
we can say that both by the level of results as well as their style, we 
find al-Khayyiim and al-liist fully set in the field allegedly pioneered 
by Descartes. 

Now, the exclusion of both traditions just examined, that of arith­
meticians and geometers including analysts (before its time), from the 
history of algebra and the justification of this ban by invoking the 
practical and computational aims of Arabic mathematicians and an 
absence of rigorous standards of proof in their work is what permits 
the history of classical algebra to be written as the work of the 
Renaissance, which (to borrow Tannery's expression) culminated in the 
"Cartesian Revolution". The Western character of algebra then appears 
as the result of an oblique interpretation or truncated history, and 
sometimes both at once. 

Among mathematical disciplines, algebra is neither a unique case, nor 
a privileged example. In varying degrees trigonometry, geometry, infin­
itesimal determinations and number theory are similarly illustrative of 
the above analysis. In a more general sense, optics, statics, mathemat­
ical geography, and astronomy are also no exception. For instance, recent 
works on the history of astronomy (some of which are in progress), render 
Tannery's understanding and interpretation of Arabic astronomers man­
ifestly outdated, if not erroneous.9 But since we assigned ourselves the 
task of examining the doctrine of the Western nature of classical science, 
we shall restrict our discussion to one essential component of this 
doctrine: experimentation. 

Was the gulf between two periods of Western science - the Greek 
and the Renaissance - not often characterized by the introduction of 
experimental norms? General agreement between philosophers, historians 
and sociologists of science undoubtedly comes to a standstill at this point; 
the differences become apparent when they attempt to define the meaning, 
scope, and origins of experimental norms. For instance, in one case its 
origins are linked with the Augustinian-Platonic current, in a second with 
the Christian tradition and particularly the dogma of Incarnation,1O in a 
third case with the engineers of the-Renaissance, in a fourth with Bacon's 
Novum Organum, and lastly, in a fifth, with Gilbert, Harvey, Kepler 
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and Galileo. Some of these attitudes were superimposed on each other, 
become entangled and contradictory, but all converge at one point: the 
Western nature of the new norms. Nevertheless, as early as the nineteenth 
century, some historians and philosophers such as Alexander von 
Humboldt in Germany and Cournot (1973, pp. 27-29) in France, diverge 
from this predominant position by attributing the origins of experimen­
tation to the Arabic period. A correct analysis of the origins or beginnings 
of experimentation is not easy since no study of the interrelationship 
between various traditions and themes connected with the concept of 
experimentation exists. Perhaps such a history, before a history of the 
term itself, would enable us to account for the multiplicity of usages 
and the ambiguity of the concept. Two histories (as yet unwritten may 
I add) particularly are necessary for this analysis: a history of the rela­
tionship between art and science, and that of the links between 
mathematics and physics. At least until such studies are made, the 
problem of the origins of experimental norms will remain unsolved and 
subject to controversy. At most then, we can advance some hypotheses 
and invoke some facts, which will nevertheless suffice to show that 
the doctrine of the Western essence of classical science does not take 
objective history into account. 

The history of the relationship between science and art places us in 
a position to understand when, why, and how it became accepted that 
knowledge may emanate from apodictic proofs and rules of practice, that 
a body of knowledge possesses the status of a science even though con­
ceived in its possibilities of practical realization whose purpose is 
external. Now a weakening of the traditional opposition between science 
and art was apparently the work of all intellectual currents during the 
Arabic period. One fact stands out: whether Muslim traditionalists, ratio­
nalist theologians, scholars of different fields or even philosophers of the 
Hellenistic tradition, such as aI-KindT or al-FarabT, they all somehow 
contributed toward a weakening of the traditional differentiation between 
science and art. In other respects this general trait undoubtedly stems 
from the no less general opinion of some historians regarding the prac­
tical spirit and realistic imagination of Arabic scholars. It is a fact that 
this new connection between science and art removed all obstacles from 
the introduction of the rules of Art, including its instruments, as objects 
of science and even more so of deductive reasoning. From now on 
knowledge may be accepted as scientific without conforming to either 
the Aristotelian or Euclidean pattern. The new concept of the status of 
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science raised disciplines traditionally confined to the domain of art to 
the dignity of scientific understanding: for example, alchemy, particu­
larly in the sense of Rhazes, medicine, pharmacology, music and 
lexicography. Nevertheless, whatever the importance of the new concept 
of the relationship between science and art, at most it could only lead 
to an extension of empirical research and a diffuse notion of experi­
mentation. And in fact, one does witness at that time the multiplication 
and systematic application of empirical procedures: for example, clas­
sification in botany and linguistics, control experiments in medicine 
and alchemy, as well as clinical observations and comparative diag­
noses by physicians. But until new links were established between 
mathematics and physics such a diffuse notion of experimentation could 
not acquire the dimension that determines it: a regulated and system­
atic component of proof. Ibn al-Haytham's work in the field of optics 
is where this new dimension primarily is seen to emerge. 

It is generally accepted that the break with optics as the geometry 
of vision or light was definitely established with Ibn al-Haytham. 
Similarly, it is common knowledge that experimentation had indeed 
become a category of proof. Lastly, it is acknowleged that Ibn al­
Haytham's successors, for example aI-Faris!, adopted experimental norms 
in their optical research (such as that performed on the rainbow). Now 
we must ask ourselves what Ibn al-Haytham understood by experimen­
tation. In his work are to be found as many meanings of this term as 
many functions ensured by experimentation, as there are links between 
mathematics and physics. A close look at his writings will indicate that 
the term and its derivatives (to experiment, experimentation, experi­
menter) belong to several superimposed systems unlikely to be discerned 
by philological analysis alone. BUll if attention is fixed primarily on 
content rather than lexical form, one can distinguish several types of 
relationships between mathematics and physics, enabling us to pinpoint 
the corresponding functions of the idea of experimentation. In fact the 
links between mathematics and physics are established according to 
several modes, even if not specifically treated by Ibn al-Haytham; they 
underlie his work and lend themselves to analysis. ll 

For geometrical optics, reformed by Ibn al-Haytham himself, the 
only link between mathematics and physics is an isomorphism of 
structures. With his definition of a ray of light in particular, Ibn al­
Haytham was able to formulate his theory of the phenomena of 
propagation, including the important phenomenon of diffusion, so that 
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they perfectly related to geometry. Various experimental set-ups were 
then devised to ensure a technical check of the propositions controlled 
earlier on the linguistic plane by geometry. For instance, we have 
experiments designed to prove the laws and rules of geometrical 
optics. A further look at Ibn al-Haytham's work attests, moreover, to 
two important and often insufficiently stressed facts: firstly, some of 
Ibn al-Haytham's experiments were not simply designed to verify 
qualitative assertions but also to obtain quantitative results; secondly, the 
varied and for the age complex apparata devised by Ibn al-Haytham, were 
not limited to that of the astronomers. 

Another type of relation between mathematics and physics is en­
countered in physical optics and, consequently, a second meaning of 
experimentation. While not opting for an atomistic theory, Ibn al­
Haytham, for the sake of his own reform of geometrical optics, stated 
that light, or as he wrote: "the smallest of the lights", is a material 
being external to vision, which moves in time, changes its velocity 
according to its medium, follows the easiest path, and diminishes in 
intensity. according to its distance from its source. At this stage 
mathematics were introduced into physical optics by means of analo­
gies established between the movement patterns of a heavy body and 
those of reflection and refraction. In other words, mathematics were 
introduced into physical optics through the intermediary of the dynamic 
patterns of the movement of heavy bodies, themselves supposed already 
mathematized. This earlier mathematical treatment of physical notions 
was what enabled them to be transferred to the experimental plane. 
Although this situation might be somewhat approximate in nature 
and only indicative in function, it nevertheless furnished a level of 
existence for syntactically structured ideas: for instance, Ibn al-Haytham's 
pattern of the movements of a projectile, which was later taken up again 
by Kepler and Descartes. 

A third type of experimentation, not practised by Ibn al-Haytham 
himself, but made possible by this reform and discoveries in optics, arose 
in the early fourteenth century in the work of his successor al-FarisI. 
In this case, the links between mathematics and physics aimed at 
reconstructing a model and, consequently, by geometric means system­
atically reduce the propagation of light from a natural to an artificial 
object. The problem is therefore to define, for propagation, an analogic 
correspondence between natural and artificial objects which is truly 
ensured of mathematical status. For instance, the model of a glass 
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sphere filled with water to explain the rainbow. Here the function of 
experimentation is to reproduce the physical conditions of a phenomena 
that cannot otherwise be studied directly or in detail. Two other types 
of experimentation can be added to the three cited above whose 
examination would involve a detailed exposition which we shall pass 
over in silence here. Despite their various functions, let us simply note 
that, unlike traditional astronomical observations, all three types of 
experimentation reveal not only a means of control, but also furnish a 
plane of existence for syntactically structured notions. In all three cases, 
it concerns situations where the scientist intends to realize his object 
physically in order to conceive it briefly as a means of realizing phys­
ically an object of thought unrealizable before. For instance, in the most 
elementary example of rectilinear propagation, Ibn al-Haytham did not 
consider any arbitrarily chosen aperture in a black box, but rather specific 
ones in accordance with specific geometric relations in order to realize 
as precisely as possible his concept of a ray. 

Ibn al-Haytham's reform including the requirement of experimental 
norms as an integral part of proof outlived him. The genealogical 
succession from Ibn al-Haytham to Kepler and into the seventeenth 
century is established. Once again, the tenet of Western classical science 
is seen to lead, as clearly as in algebra, to a truncation of objective history 
through choices that must indeed be qualified as ideological. 

In conclusion, let us recall three points: 
1. Launched in the eighteenth century, the tenet of the Western nature 

of classical science for establishing a diachrony of Universal reason, owes 
to nineteenth-century Orientalism the picture we know today. It was 
then believed that one could deduce from cultural anthropology that 
classical science is European and that its origins are directly traceable 
to Greek science and philosophy. 

2. On the one hand, the opposition between the East and the West 
underlies the criticism of science and rationalism in general; on the other, 
it excludes de facto and de jure the scientific production of the Orient 
from the history of science. To justify the exclusion of science written 
in Arabic from the history of science, one invokes its absence of rigour, 
its calculatory appearance and its practical aims. Furthermore, strictly 
dependent on Greek science and, lastly, incapable of introducing 
experimental norms, scientists of that time were relegated to the role 
of conscientious guardians of the Hellenistic museum. Though attenu­
ated in the course of this century, particularly during the last twenty 
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years, this picture of Arabic science persists nonetheless in the ideology 
of historians. 

3. Confronted with the facts, this tenet reveals a disdain for histor­
ical data and a capacity for ideological interpretation; notions that raise 
more issues than they solve are accepted as evidence. We thus have the 
notion of a Scientific Renaissance, though in many disciplines everything 
indicates that there was at most only reactivation. As recent endeav­
ours show, such elements of pseudo-evidence were soon to provide the 
conceptual basis of a philosophy or sociology of science, as well as a 
starting point for theoretical elaboration in the history of science. 

We must now ask ourselves, though rather unoptimistically, if the time 
is not ripe to abandon an anthropological characterization of classical 
science and its still lively traces in historical writings, to give back to 
the profession of historian of science the objectivity it requires, to dis­
continue the clandestine import and circulation of uncontrolled ideologies, 
to refrain from reductionist tendencies whatever their origin that favour 
similarities at the expense of differences, to be wary of writing history 
that relies on miracles (Greek for most historians, Arabic for Sarton). 
In short, if the moment has not come to write history without recourse 
to false evidence whose nationalistic motivations are barely concealed. 
The neutrality of the historian, a condition for a theoretical elaboration 
in the history of science, is not an a priori ethical value. It can only be 
the product of painstaking work, undeceived by myths engendered by 
the East-West couple. Above all, commonly accepted periodization in 
the history of science must be drastically changed. A new, differential 
periodization will break with the general history of science and refuse 
an unfounded identification between logical and historical time. It will 
place works written between the tenth and seventeenth centuries under 
the same heading of classical algebra or classical optics, for example. 
Consequently, not only the notion of classical science, a notion whose 
elements are heterogenous and situated on varying planes, but also that 
of medieval science, will be re-aligned. Classical science will reveal itself 
to be what it has never ceased to be: a product of the Mediterranean, 
not as such, but as the hub of exchanges between civilizations at the 
centre and on the outskirts of the ancient world. Only then can the 
historian of science clarify a debate currently involving several coun­
tries of the ancient world and lying at the heart of their cultures today, 
the debate between modernism and tradition. 
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NOTES 

1. Montesquieu (1964). See Letters 104 and 135, in particular, Letter 97. 
2. The title of a chapter of Quinet's Genie des religions (1841). 
3. Schlegel (1837). Remember that, for Schlegel (1837, p. 51), language is divided 

into two types, flexional and inflexional languages, which "completely exhaust the 
entire range of language". According to him (pp. 54-61), Semitic languages are 
not flexional since the flexional structure based on roots was a borrowing. 

As for Indo-Germanic languages (Schlegel, 1937, p. 79), "they require the clearest 
and most penetrating intelligence as they express the highest notions of pure and 
universal thought as well as the entire range of consciousness". 

4. Renan (1863, p. IX). Renan adhered to the vision and expression of German linguists. 
He wrote, for instance (1863, p. 18): ''The unity and simplicity which characterize 
the Semitic race, are found in Semitic languages themselves. Abstraction is unknown 
to them and metaphysics impossible .. As language is a necessary mould for the 
intellectual activities of a people, an idiom almost bereft of syntax, without variety 
of construction, deprived of conjunctions that establish such delicate relations between 
members of thought, that depict objects by their external qualities, must be eminently 
suited to the eloquent inspiration of visual thinkers and the image of fugitive 
impressions, but must reject any philosophy, any intellectual inspiration". 

Further on, we read (p. 22): "We may say that Aryan languages compared with 
Semitic languages are the languages of abstraction and metaphysics compared with 
those of realism and sensitivity". 

5. Lassen (1847, I, pp. 414ff.). See, for example, p. 415: "Auch die Philosophie gehOrt 
den Semiten nicht, sie haben sich, und zwar nur die Araber, bei den Philosophen 
der Indogermanen eingemiethet. Ihre Anschauungen und Vorstellungen beherrschen 
ihrer Geist zu sehr, als dass er sich wm FesthaIten des reinen Gedankens ruhig 
erheben und das allgemeine und nothwendige von seiner eigenen IndividualiUit und 
deren Zufahligkeiten trennen konnte". 

6. Milhaud (1893, p. 306) cited Renan as follows: "As for miracles, as Mr Renan said 
recently at the banquet of the Association of Greek Studies, there exists one in history: 
Ancient Greece. There is no doubt that around 500 H.C. a type of civilisation had 
achieved such perfection and accomplishment that all its predecessors faded into 
obscurity. This was truly the birth of reason and liberty". See also Renan (1883, p. 
59). 

7. See, e.g. Duhem (1965, II, p. 126) where he mentions "the realistic tendencies of 
the Arabic imagination". 

8. See Woepcke's works, Anbouba's edition of al-KarajI's al-Badi' and our various 
studies on the history of this school of algebraists. 

9. See. in particular, Carra de Vaux's translation of "Les spheres celestes selon NasIril 
Eddln Attilsf', published in Tannery (1883, App. VI, pp. 337-361). 

10. This point of view is illustrated by the Hegelian Alexander Kojeve (1964, II, pp. 
295-306). 

11. See works by Wiedemann, M. NazIf, Schramm, Sabra and ourselves on Ibn al­
Haytham and ai-Faris!. 
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PERIODIZATION IN CLASSICAL MATHEMATICS 

The dichotomy between "medieval" and "modern" has dominated and 
continues to dominate the history of mathematics. At least until the 
mid-seventeenth century this dichotomy was considered an indispensable 
tool for periodization and, consequently, one of the pivots around which 
the diachrony of mathematics revolves. It is therefore understandable that 
for all sides involved in the famous debate on concepts and methods 
in the historiography of science still alive today, it is considered a 
postulate, or rather an assumption prior to any historical periodization 
of mathematics. To be convinced of the fact one only needs to consult 
historical compendia such as those of Montucla or Cantor, or more recent 
synthetical studies such as, for example, that of Bourbaki, or special­
ized monographs by Zeuthen in the past or Youschkevitch today. They 
all accept this postulate in order to apprehend, as they readily say, the 
rise of modern mathematics and agree to introduce an additional notion, 
that of Renaissance mathematics, which raises more problems than it 
solves. Therefore nothing could be more natural than a study of the 
dichotomy between "medieval" and "modern" in the light of progress 
accomplished during the last few decades in our knowledge of Arabic 
mathematics between the ninth and sixteenth centuries and the Latin 
world after the twelfth century. 

Let us stop to consider this dichotomy itself. In works on the history 
of mathematics this well-known opposition between "medieval" and 
"modern" is not only used to mark stages in chronology, but is also 
invoked, deliberately or not, to designate two distinct mathematical 
positivities. It is relatively unimportant then that "modern mathematics" 
is considered as a radical departure from medieval mathematics, or its 
natural development, or even as a direct continuation of Hellenistic 
mathematics, thus completely bypassing medieval mathematics. Though 
at first glance contradictory and exclusive, such opinions do however 
converge when medieval mathematics is seen as constituting not only 
a historical entity, but standing in opposition to another entity created 
at the Renaissance. 

But, whatever position is chosen, one is soon confronted with major 
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difficulties. The first arises from the meaning of the term "medieval". 
Is one entitled to designate under this same heading Latin, Byzantine 
and Arabic mathematics, to mention only these? Is one justified in 
grouping them together by associating them with Chinese and Indian 
mathematics as some eminent historians do, on the pretext that they 
are contemporary to one another? Moreover, it is not uncommon that 
the historian, though without clearly formulating the problem, quite often 
avoids it altogether by writing separate histories of each of these three 
- or five - mathematics in turn. But as he is not entitled, either de jure 
or de jacto, to presuppose a generically common feature for medieval 
mathematics as a whole, the dichotomy collapses, and with it the 
suggested periodization. 

But the question raised by the use of the term "medieval" is more 
formidable when it concerns the same mathematics. One will look in vain 
for reasons to justify applying it, for example, to Leonardo of Pisa in 
the twelfth century, but not Luca Pacioli at the end of the fifteenth; or 
to al-KarajI at the end of the tenth, but not ai-YazdI at the end of the 
seventeenth. 

Such questions, of an apparently methodological nature, turn out to be 
both historical and epistemological. And to clarify this dichotomy 
requires a better knowledge of the components of medieval mathematics 
and their basic features. These are precisely some of the aspects I wish 
to outline briefly here for the single case of mathematics written in Arabic 
between the ninth and seventeenth centuries. 

Let us start with Baghdad in the early ninth century. The work of 
translating the great compositions of Hellenistic mathematics was at its 
peak. Two important, though underemphasized, aspects of this work 
are of prime importance: the translations were conducted by scientists 
and mathematicians, often of outstanding ability, such as Thabit ibn 
Qurra, for example, and they were stimulated by the most advanced 
research of their age. For instance, everything indicates that Qus Pl 
ibn Liiqa's translation of Diophantus' Arithmetica around 870, was 
stimulated by earlier research on indeterminate analysis or rather rational 
Diophantine analysis. Even the translation of Burning Mirrors by Diocles 
or Anthemius of Tralles had to satisfy the requirements of research in 
this field. We could multiply such examples, all of which reveal the close 
ties between translation on the one hand, and research and innovation 
on the other. To overlook this aspect of the question is to refrain from 
understanding the properties of these translations, as well as the 
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circulation of translated knowledge and the ways and means for inno­
vation. 

In short, the work of translation represented a great moment in the 
expansion of Hellenistic mathematics in Arabic. Now, it was precisely 
at this time and in the same milieu - the Academy of Baghdad (the House 
of Wisdom) - that al-KhwarizmI composed a work whose subject matter 
and style were new. For the first time algebra emerged as a distinct 
and independent branch of mathematics. This was a crucial event and 
recognized as such by his contemporaries, not only by the style of this 
mathematics but also the ontology of its object, and above all, by the 
possibilities it opened up for the future. The style is in fact both algo­
rithmic and demonstrative. Moreover, it was necessary to conceive a 
mathematical being general enough to receive determinations of different 
kinds, yet whose existence is independent of its own determinations. 
In al-KhwarizmI's earlier work (around 830), the algebraic object referred 
not only to rational numbers but also to irrational quantities or geo­
metrical magnitudes as well. Algebra as a science had to be both 
apodictic and applied. This new ontology, including the combination 
of demonstrative and applied methods, impressed contemporary philoso­
phers. Without further pursuing the point, let us just note that with this 
algebra one catches a glimpse of the incredible potential available to 
mathematics after the tenth century: the application of mathematical 
disciplines to each other. In other words, if algebra, due to the general 
nature of its object and the ontology thus introduced, made such appli­
cations possible, the number and differing nature of these applications 
will increasingly modify the configuration of mathematics after the 
tenth century. 

AI-KhwarizmI's successors undertook a systematic application of 
arithmetic to algebra, algebra to arithmetic, both of them to trigonometry, 
algebra to the Euclidean theory of numbers, algebra to geometry, and 
geometry to algebra. These applications were always the starting point 
for new disciplines, or at least new topics. This was how the creation 
of polynomial algebra, combinatorial analysis, numerical analysis, the 
numerical solution of equations, the new elementary theory of numbers, 
and the geometric construction of equations arose. Other results should 
be included, such as the separation of Diophantine integer analysis from 
rational Diophantine analysis, now an independent chapter of algebra 
entitled "indeterminate analysis". 

So from the ninth century onwards the mathematical scene was 
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different; it had changed and its horizon had expanded. In the first 
place, we witness the extension of Hellenistic arithmetic and geometry. 
The theory of conics, the theory of parallels, Euclidean number theory, 
Archimedian methods for measuring surfaces and volumes, and isoperi­
metric problems: all these fields were to become subjects of study for 
the greatest names in mathematics -- Thiibit ibn Qurra, al-QiihI, Ibn al­
Haytham, just to name a few - who by thorough research succeeded in 
developing them in the same style as that of their predecessors. Secondly, 
non-Hellenistic areas were carved out within the field of Hellenistic 
mathematics. As we have seen, algebraic methods provided the means 
to study not only first arithmetical functions but also sequences of 
figurative numbers, by promoting the creation of a new area in Euclidean 
number theory. Lastly, if we add the recently created disciplines men­
tioned above to the extension of the. same field and the creation of new 
areas within it, a new picture of mathematics is seen to emerge. More 
detailed analysis will reveal a change in the relationship between ancient 
disciplines and the appearance of many other combinations. This change 
in relationship is of prime importance if the history of mathematics is 
to be understood. Let us take Book X of Euclid's Elements as an example. 
A work on geometry for Euclid, Pappus and even Ibn al-Haytham from 
the tenth century onwards, it came to be seen as a work on algebra 
concerned with, to use another language, finite algebraic extensions in 
the field of rational numbers. 

The introduction of a new kind of proof - algebraic proof - hitherto 
unknown, was just as important as changes in the mathematical scene. 
In fact, even if the Euclidean or Archimedian type of geometrical proof 
continued to prevail, algebraic proofs began to dominate areas such as 
polynomial algebra, combinatorial analysis and the new number theory. 
Moreover, this proof alone was used to justify algorithms for solving 
algebraic or numerical equations. 

Other important techniques came to light at the same time; for 
example, the study of local analysis will help us define this ml!,the­
matics more clearly. To understand the rise of the local point of view, 
let us return to the dialectic between algebra and geometry, mentioned 
earlier. 

Without any theoretical justification, tenth-century mathematicians 
initiated an entirely novel, dual translation: they translated solid problems, 
non-constructible with ruler and compass, into algebraic form, in par­
ticular the trisection of an angle, the two means and the regular heptagon. 
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At the same time some mathematicians and astronomers proceeded with 
this algebraic translation to determine the chords of angles in order to 
construct the table of sines. AI-MahanT, al-Khazin and al-BTliinT, among 
others, are landmarks in this trend of algebraic translation. These are 
therefore the main aspects of the dialectic between algebra and geometry. 
To be comprehensive we should also mention two obstacles which 
slowed down the advancement of the new mathematics by hampering, 
in particular, the expansion of local analysis: a lack of audacity in the 
use of negative numbers as such, even though they remained undefined, 
and a weakness of algebraic symbolism. All these questions will be 
subjects of concern for later mathematicians. 

If we endorse the above analysis, then nothing justifies the creation 
of separate classifications for work accomplished during the ninth century 
on the one hand, and work produced later on in the early seventeenth 
century. In fact, everything suggests that it was basically the same math­
ematics. To be convinced of this we only need, for example, to draw a 
comparison between al-SamawJal and Simon Stevin for algebra and 
numerical analysis; al-FarisT and Descartes for number theory; al-TusT 
and Viete on methods for the numerical solution of equations; al-TusT 
and Fermat on research on maxima; al-Khazin and Bachet de Meziriac 
on Diophantine integer analysis, etc. If, on the other hand, we disre­
gard the work of al-KhwarizmT, AbU Kamil, al-KarajT, to name only them, 
how is it possible to understand not only the work of Leonardo of Pisa 
and Italian mathematics, but also later seventeenth-century mathemati­
cians? 

The rift was neither necessarily sudden, nor did it occur simultane­
ously in all branches of mathematics. On the other hand, the lines of 
cleavage seldom encompass authors, but often run right across their work. 
Therefore, the new number theory did not commence with Descartes' and 
Fermat's theory of algebraic method as has been claimed; by proceeding 
in this way they merely rediscovered al-FarisI's results. On the contrary, 
the origins of the new theory are to be found in the application of purely 
arithmetic methods, namely when Fermat, around 1640, invented the 
"infinite descent" and embarked on the study of some quadratic forms. 
Therefore the rift occurs in the heart of Fermat's work, somewhere around 
1640. The situation is quite different concerning the geometric con­
struction of equations: it was initiated by al-Khayyam, pursued by al-TusT, 
developed by Descartes and taken up by many other mathematicians at 
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the end of the same century and even right up to the middle of the next 
century. 

It is obvious that the frontiers between these different periods are 
hazy and interwoven and, of course, neatly defined periods exist only 
"in textbooks", as Alexandre Koyre once wrote. The first half of the 
seventeenth century is when this rift occurs and the dividing lines 
intertwine. 

Historical and epistemological analysis that takes Arabic mathematics 
into account as well as its usage in Latin leads to the elaboration of a 
coherent picture of the configuration of mathematics between the ninth 
and seventeenth centuries. But the division of this configuration, and 
consequently, the resulting periodization cannot be adapted to the 
framework of the dichotomy between "medieval" and "modem". In the 
final analysis, periodization is seen as an inadequate transfer from 
political history which is doubly out of step in relation to the history 
of mathematics. The only periodization truly based on historical facts 
must surely be a differential one. 
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